13 research outputs found

    Intratumoral CRH modulates immuno-escape of ovarian cancer cells through FasL regulation

    Get PDF
    Although corticotropin-releasing hormone (CRH) and Fas ligand (FasL) have been documented in ovarian carcinoma, a clear association with tumour progression and immuno-escape has not been established. FasL plays an important role in promoting tumour cells' ability to counterattack immune cells. Here, we examined immunohistochemically the expression of CRH, CRHR1, CRHR2 and FasL in 47 human ovarian cancer cases. The ovarian cancer cell lines OvCa3 and A2780 were further used to test the hypothesis that CRH might contribute to the immune privilege of ovarian tumours, by modulating FasL expression on the cancer cells. We found that CRH, CRHR1, CRHR2 and FasL were expressed in 68.1, 70.2, 63.8 and 63.8% of the cases respectively. Positivity for CRH or FasL expression was associated with higher tumour stage. Finally, CRH increased the expression of FasL in OvCa3 and A2780 cells through CRHR1 thereby potentiated their ability to induce apoptosis of activated peripheral blood lymphocytes. Corticotropin-releasing hormone produced by human ovarian cancer might favour survival and progression of the tumour by promoting its immune privilege. These findings support the hypothesis that CRHR1 antagonists could potentially be used against ovarian cancer

    miR-26b Promotes Granulosa Cell Apoptosis by Targeting ATM during Follicular Atresia in Porcine Ovary

    Get PDF
    More than 99% of ovarian follicles undergo atresia in mammals, but the mechanism of follicular atresia remains to be elucidated. In this study, we explored microRNA (miRNA) regulation of follicular atresia in porcine ovary. A miRNA expression profile was constructed for healthy, early atretic, and progressively atretic follicles, and the differentially expressed miRNAs were selected and analyzed. We found that miR-26b, which was upregulated during follicular atresia, increased the number of DNA breaks and promoted granulosa cell apoptosis by targeting the ataxia telangiectasia mutated gene directly in vitro

    Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer

    Get PDF
    Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis which drives endothelial cell survival, proliferation, and migration while increasing vascular permeability. Playing an important role in the physiology of normal ovaries, VEGF has also been implicated in the pathogenesis of ovarian cancer. Essentially by promoting tumor angiogenesis and enhancing vascular permeability, VEGF contributes to the development of peritoneal carcinomatosis associated with malignant ascites formation, the characteristic feature of advanced ovarian cancer at diagnosis. In both experimental and clinical studies, VEGF levels have been inversely correlated with survival. Moreover, VEGF inhibition has been shown to inhibit tumor growth and ascites production and to suppress tumor invasion and metastasis. These findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling pathway in patients with ovarian cancer. In this review, we will focus on VEGF involvement in the pathophysiology of ovarian cancer and its contribution to the disease progression and dissemination

    Novel trends in follicular development, atresia and corpus luteum regression: A role for apoptosis

    No full text
    During ovarian follicular development in humans, only a limited number of follicles mature and ovulate. The vast majority of follicles stop developing after the formation of an antrum and then undergo atresia. The few that are selected to become ovulatory follicles are transformed into corpora lutea following ovulation. The lifespan of the corpus luteum is also limited. In each oestrus/menstrual cycle, corpora lutea regress and are eliminated by a progress called luteolysis. During atresia and luteolysis, granulosa and lutein cells undergo apoptosis. It is believed that there are many signal transduction pathways that control apoptosis in order to suppress full maturation of too many follicles and to protect the dominant follicle from the apoptotic process prior the ovulation. Such interplay between different factors, some of them produced in the ovary, may modulate apoptosis of corpus luteum cells, in order to preserve the function of the corpus luteum during pregnancy or to eliminate the old corpora lutea of the previous cycle. The present review reports a number of factors that regulate follicular atresia and corpus luteum regression, via apoptotic pathways. Elucidation of apoptotic mechanisms may lead to prevention of female infertility or other pathological conditions

    Luteogenic hormones act through a vascular endothelial growth factor-dependent mechanism to up-regulate α5β1 and αvβ3 integrins, promoting the migration and survival of human luteinized granulosa cells

    No full text
    The formation of the corpus luteum (CL) is critical for the establishment of a successful pregnancy. After ovulation, the CL develops from the remnants of the ovulated ovarian follicle. This process, which involves varying cell-matrix interactions, is poorly characterized. To understand the role and potential regulation of cell-matrix interactions in the formation of the CL, we investigated the expression and activity of the matrix protein fibronectin (FN) and several of its integrin receptors on luteinized granulosa cells (GCs). In situ, FN and several FN-binding integrins were detected around luteinizing GCs during the early luteal phase, although expression declined in the late luteal phase. In vitro, GCs released FN, and stimulation of these cells with human chorionic gonadotropin increased the surface expression of FN, α5β1, and αvβ 3. Up-regulation of these proteins on GCs was reproduced by stimulation with vascular endothelial growth factor (VEGF) and was inhibited by anti-VEGF antibody. Lasdy, expression of α5β1 and αvβ3 mediated adhesion to FN, facilitated migration, and prevented apoptosis. These data suggest that in vivo luteogenic hormones, in part through a VEGF-dependent mechanism, stimulate selected integrin-matrix adhesive interactions that promote the motility and survival of GCs and thus contribute to the formation and preservation of the CL. Copyright © American Society for Investigative Pathology

    Intratumoral CRH modulates immuno-escape of ovarian cancer cells through FasL regulation

    No full text
    Although corticotropin-releasing hormone (CRH) and Fas ligand ( FasL) have been documented in ovarian carcinoma, a clear association with tumour progression and immuno-escape has not been established. FasL plays an important role in promoting tumour cells’ ability to counterattack immune cells. Here, we examined immunohistochemically the expression of CRH, CRHR1,CRHR2 and FasL in 47 human ovarian cancer cases. The ovarian cancer cell lines OvCa3 and A2780 were further used to test the hypothesis that CRH might contribute to the immune privilege of ovarian tumours, by modulating FasL expression on the cancer cells. We found that CRH, CRHR1, CRHR2 and FasL were expressed in 68.1, 70.2, 63.8 and 63.8% of the cases respectively. Positivity for CRH or FasL expression was associated with higher tumour stage. Finally, CRH increased the expression of FasL in OvCa3 and A2780 cells through CRHR1 thereby potentiated their ability to induce apoptosis of activated peripheral blood lymphocytes. Corticotropin-releasing hormone produced by human ovarian cancer might favour survival and progression of the tumour by promoting its immune privilege. These findings support the hypothesis that CRHR1 antagonists could potentially be used against ovarian cancer

    Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity. I. Challenges and research needs in ecotoxicology

    Get PDF
    To elucidate the effects of chemicals on populations of different species in the environment, efficient testing and modeling approaches are needed that consider multiple stressors and allow reliable extrapolation of responses across species. An adverse outcome pathway (AOP) is a concept that provides a framework for organizing knowledge about the progression of toxicity events across scales of biological organization that lead to adverse outcomes relevant for risk assessment. In this paper, we focus on exploring how the AOP concept can be used to guide research aimed at improving both our understanding of chronic toxicity, including delayed toxicity as well as epigenetic and transgenerational effects of chemicals, and our ability to predict adverse outcomes. A better understanding of the influence of subtle toxicity on individual and population fitness would support a broader integration of sublethal endpoints into risk assessment frameworks. Detailed mechanistic knowledge would facilitate the development of alternative testing methods as well as help prioritize higher tier toxicity testing. We argue that targeted development of AOPs supports both of these aspects by promoting the elucidation of molecular mechanisms and their contribution to relevant toxicity outcomes across biological scales. We further discuss information requirements and challenges in application of AOPs for chemical- and site-specific risk assessment and for extrapolation across species. We provide recommendations for potential extension of the AOP framework to incorporate information on exposure, toxicokinetics and situation-specific ecological contexts, and discuss common interfaces that can be employed to couple AOPs with computational modeling approaches and with evolutionary life history theory. The extended AOP framework can serve as a venue for integration of knowledge derived from various sources, including empirical data as well as molecular, quantitative and evolutionary-based models describing species responses to toxicants. This will allow a more efficient application of AOP knowledge for quantitative chemical- and site-specific risk assessment as well as for extrapolation across species in the future.ISSN:0045-6535ISSN:1879-129

    Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity. II. A focus on growth impairment in fish

    No full text
    Adverse outcome pathways (AOPs) organize knowledge on the progression of toxicity through levels of biological organization. By determining the linkages between toxicity events at different levels, AOPs lay the foundation for mechanism-based alternative testing approaches to hazard assessment. Here, we focus on growth impairment in fish to illustrate the initial stages in the process of AOP development for chronic toxicity outcomes. Growth is an apical endpoint commonly assessed in chronic toxicity tests for which a replacement is desirable. Based on several criteria, we identified reduction in food intake to be a suitable key event for initiation of middle-out AOP development. To start exploring the upstream and downstream links of this key event, we developed three AOP case studies, for pyrethroids, selective serotonin reuptake inhibitors (SSRIs) and cadmium. Our analysis showed that the effect of pyrethroids and SSRIs on food intake is strongly linked to growth impairment, while cadmium causes a reduction in growth due to increased metabolic demands rather than changes in food intake. Locomotion impairment by pyrethroids is strongly linked to their effects on food intake and growth, while for SSRIs their direct influence on appetite may play a more important role. We further discuss which alternative tests could be used to inform on the predictive key events identified in the case studies. In conclusion, our work demonstrates how the AOP concept can be used in practice to assess critically the knowledge available for specific chronic toxicity cases and to identify existing knowledge gaps and potential alternative tests.ISSN:0045-6535ISSN:1879-129

    Putative adverse outcome pathways relevant to neurotoxicity.

    No full text
    The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways
    corecore