14,756 research outputs found
Restrictions on the coherence of the ultrafast optical emission from an electron-hole pairs condensate
We report on the transfer of coherence from a quantum-well electron-hole
condensate to the light it emits. As a function of density, the coherence of
the electron-hole pair system evolves from being full for the low density
Bose-Einstein condensate to a chaotic behavior for a high density BCS-like
state. This degree of coherence is transfered to the light emitted in a damped
oscillatory way in the ultrafast regime. Additionally, the photon field
exhibits squeezing properties during the transfer time. We analyze the effect
of light frequency and separation between electron and hole layers on the
optical coherence. Our results suggest new type of ultrafast experiments for
detecting electron-hole pair condensation.Comment: 4 pages,3 figures, to be published in Physical Review Letters. Minor
change
Black Hole Scattering from Monodromy
We study scattering coefficients in black hole spacetimes using analytic
properties of complexified wave equations. For a concrete example, we analyze
the singularities of the Teukolsky equation and relate the corresponding
monodromies to scattering data. These techniques, valid in full generality,
provide insights into complex-analytic properties of greybody factors and
quasinormal modes. This leads to new perturbative and numerical methods which
are in good agreement with previous results.Comment: 28 pages + appendices, 2 figures. For Mathematica calculation of
Stokes multipliers, download "StokesNotebook" from
https://sites.google.com/site/justblackholes/techy-zon
The 2011 October Draconids Outburst. II. Meteoroid Chemical Abundances from Fireball Spectroscopy
On October 8, 2011 the Earth crossed dust trails ejected from comet
21P/Giacobini-Zinner in the late 19th and early 20th Century. This gave rise to
an outburst in the activity of the October Draconid meteor shower, and an
international team was organized to analyze this event. The SPanish Meteor
Network (SPMN) joined this initiative and recorded the October Draconids by
means of low light level CCD cameras. In addition, spectroscopic observations
were carried out. Tens of multi-station meteor trails were recorded, including
an extraordinarily bright October Draconid fireball (absolute mag. -10.5) that
was simultaneously imaged from three SPMN meteor ob-serving stations located in
Andalusia. Its spectrum was obtained, showing a clear evolution in the relative
intensity of emission lines as the fireball penetrated deeper into the
atmosphere. Here we focus on the analysis of this remarkable spectrum, but also
discuss the atmospheric trajectory, atmospheric penetration, and orbital data
computed for this bolide which was probably released during
21P/Giacobini-Zinner return to perihelion in 1907. The spectrum is discussed
together with the tensile strength for the October Draconid meteoroids. The
chemical profile evolution of the main rocky elements for this extremely bright
bolide is compared with the elemental abundances obtained for 5 October
Draconid fireballs also recorded during our spectroscopic campaign but observed
only at a single station. Significant chemical heterogeneity between the small
meteoroids is found as we should expect for cometary aggregates being formed by
diverse dust components.Comment: Manuscript in press in Monthly Notices of the Royal Astronomical
Society. Accepted for publication in MNRAS on April 28th, 2013 Manuscript
Pages: 28 Tables: 5 Figures: 12. Manuscript associated: "The 2011 October
Draconids outburst. I. Orbital elements, meteoroid fluxes and
21P/Giacobini-Zinner delivered mass to Earth" by Trigo-Rodriguez et al. is
also in press in the same journa
What’s the Right Move? The Relation Between Relocating and Psychosocial Outcomes Among Latinx College Students
The study investigated the role of relocating on the mental health, psychosocial stress, and social support of 159 first- and second-year Latinx college students. Findings revealed students who relocated for college had significantly higher self-reported sense of campus belonging, and social support compared to students who did not relocate. Implications for college readiness organizations and universities with commuter populations are discussed. Future directions to enhance the understanding of Latinx students’ transitionary experiences are also reviewed.
-
El estudio investigó la importancia de la reubicación en la salud mental, el estrés psicosocial y el apoyo social de 159 estudiantes universitarios Latinxs de primer y segundo año. Los hallazgos revelaron que los estudiantes que se mudaron para asistir a la universidad tenÃan un sentido de pertenencia al campus y apoyo social significativamente mayor en comparación con los estudiantes que no se mudaron. En este estudio se discuten las implicaciones para las organizaciones de preparación universitaria y las universidades con poblaciones de viajeros entre su domicilio y la universidad. También futuras recomendaciones se dan para mejorar la comprensión de las experiencias de transición de los estudiantes Latinxs
- …