7,691 research outputs found

    Stress corrosion resistant fasteners

    Get PDF
    A family of high performance aerospace fasteners made from corrosion resistant alloys for use in applications where corrosion and stress-corrosion cracking are of major concern are discussed. The materials discussed are mainly A-286, Inconel 718, MP35N and MP159. Most of the fasteners utilize cold worked and aged materials to achieve the desired properties. The fasteners are unique in that they provide a combination of high strength and immunity to stress corrosion cracking not previously attainable. A discussion of fastener stress corrosion failures is presented including a review of the history and a description of the mechanism. Case histories are presented to illustrate the problems which can arise when material selection is made without proper regard for the environmental conditions. Mechanical properties and chemical compositions are included for the fasteners discussed. Several aspects of the application of high performance corrosion resistant fasteners are discussed including galvanic compatibility and torque-tension relationships

    Dairy Farmer's Valuation of Market Security Offered by Milk Marketing Cooperatives

    Get PDF
    Dairy farmers often rank the benefit from a secure market as a major reason for belonging to a milk-marketing cooperative. This paper proposes a technique for valuing this decreased market risk through development of a willingness-to-pay measure.Agribusiness, Livestock Production/Industries, Marketing,

    Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    Get PDF
    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature distributions throughout the system, and (4) performance parameters such as thrust coefficient, specific impulse, mass flow rates, and equivalence ratio. Preliminary results are in good agreement with available performance data for systems resembling the NASP vehicle configuration

    Using the local gyrokinetic code, GS2, to investigate global ITG modes in tokamaks. (I) s-α{\alpha} model with profile and flow shear effects

    Full text link
    This paper combines results from a local gyrokinetic code with analytical theory to reconstruct the global eigenmode structure of the linearly unstable ion-temperature-gradient (ITG) mode with adiabatic electrons. The simulations presented here employ the s-α{\alpha} tokamak equilibrium model. Local gyrokinetic calculations, using GS2 have been performed over a range of radial surfaces, x, and for ballooning phase angle, p, in the range -π≤p≤π{\pi} {\leq} p {\leq\pi}, to map out the complex local mode frequency, Ω0(x,p)=ω0(x,p)+iγ0(x,p){\Omega_0(x, p) = \omega_0(x, p) + i\gamma_0(x, p)}. Assuming a quadratic radial profile for the drive, namely ηi=Ln/LT{\eta_i = L_n/L_T}, (holding constant all other equilibrium profiles such as safety factor, magnetic shear etc.), Ω0(x,p){\Omega_0(x, p)} has a stationary point. The reconstructed global mode then sits on the outboard mid plane of the tokamak plasma, and is known as a conventional or isolated mode, with global growth rate, γ{\gamma} ~ Max[γ0(x,p){\gamma_0(x, p)}], where γ0(x,p){\gamma_0(x, p)} is the local growth rate. Taking the radial variation in other equilibrium profiles (e.g safety factor q(x)) into account, removes the stationary point in Ω0(x,p){\Omega_0(x, p)} and results in a mode that peaks slightly away from the outboard mid-plane with a reduced global growth rate. Finally, the influence of flow shear has also been investigated through a Doppler shift, ω0→ω0+nΩ′x{\omega_0 \rightarrow \omega_0 + n\Omega^{\prime}x}, where n is the toroidal mode number and Ω′{\Omega^{\prime}} incorporates the effect of flow shear. The equilibrium profile variation introduces an asymmetry to the growth rate spectrum with respect to the sign of Ω′{\Omega^{\prime}}, consistent with recent global gyrokinetic calculations.Comment: 10 pages, 8 figures and 1 tabl

    Legal Ethics: Attorney Disciplined for Unprofessional Conduct

    Get PDF

    Isolation of ��₂-microglobulin from miniature swine area

    Get PDF

    Exploring And Training Spatial Reasoning Via Eye Movements: Implications On Performance

    Get PDF
    This dissertation sought to determine if eye movements could serve as an indicator of success in spatial reasoning, and if eye movements associated with successful completion could be applied to strategically improve spatial reasoning. Using the line images of Shepard and Metzler, an electronic test of mental rotations ability (EMRT) was designed. Two versions of the test were created, allowing for both a timed (6 seconds per question) and untimed testing environment. Four experiments were designed and completed to relate mental rotation ability (MRA) scores from the EMRT, to patterns in chrononumeric and visual salience data. In each experiment, participants completed the EMRT under a different protocol. These protocols included an untimed EMRT, a timed EMRT, a within-participant crossover study where participants completed both the timed, and untimed EMRT in series, and a training crossover study where low MRA participants completed the timed EMRT in both a guided and unguided environment. In the untimed experiment, individuals of high and low MRA were asked to complete the EMRT while their eye movements were observed. As no time limit was imposed, the results allowed for observations based on MRA alone, and served to demonstrate and how individuals of different skill level differ in terms of eye movement. In the following experiment, the addition of a time limit to the EMRT revealed how individuals of high and low MRA perform when under a time restriction. The results of the Timed experiment confirmed differences between the high and low MRA group in terms of eye movements, and attention to salient regions of test images. In the third experiment, the addition of a time limit was further explored through a crossover design. By adding a time limit to an MRT, the ability of individuals to solve spatial problems is impaired, and is manifest in eye movements. Data derived from the Crossover Experiment suggested that salience-based metrics might serve to distinguish between groups of MRA, and that time restrictions may influence both participant accuracy, and identification of visually salient elements. The results from the first three experiments were then applied in the Guidance Experiment to confirm the role that visual salience plays in the context of spatial problem solving. By mapping the apprehension patterns of successful high MRA individuals onto the EMRT, low MRA individuals could be guided to salient areas on the timed EMRT. The results revealed that the application of visual guidance is an effective mechanism for MRA training. This research attends to a previously unaddressed niche in eye-movement and spatial ability training literature. As a result, it may serve as a foundation to cultivate methods of honing and improving spatial skills in the general population

    Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment

    Get PDF
    Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid

    Transition to subcritical turbulence in a tokamak plasma

    Full text link
    Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.Comment: 16 pages, 5 figures, accepted to Journal of Plasma Physic
    • …
    corecore