9,797 research outputs found
Dairy Farmer's Valuation of Market Security Offered by Milk Marketing Cooperatives
Dairy farmers often rank the benefit from a secure market as a major reason for belonging to a milk-marketing cooperative. This paper proposes a technique for valuing this decreased market risk through development of a willingness-to-pay measure.Agribusiness, Livestock Production/Industries, Marketing,
Stress corrosion resistant fasteners
A family of high performance aerospace fasteners made from corrosion resistant alloys for use in applications where corrosion and stress-corrosion cracking are of major concern are discussed. The materials discussed are mainly A-286, Inconel 718, MP35N and MP159. Most of the fasteners utilize cold worked and aged materials to achieve the desired properties. The fasteners are unique in that they provide a combination of high strength and immunity to stress corrosion cracking not previously attainable. A discussion of fastener stress corrosion failures is presented including a review of the history and a description of the mechanism. Case histories are presented to illustrate the problems which can arise when material selection is made without proper regard for the environmental conditions. Mechanical properties and chemical compositions are included for the fasteners discussed. Several aspects of the application of high performance corrosion resistant fasteners are discussed including galvanic compatibility and torque-tension relationships
Using the local gyrokinetic code, GS2, to investigate global ITG modes in tokamaks. (I) s- model with profile and flow shear effects
This paper combines results from a local gyrokinetic code with analytical
theory to reconstruct the global eigenmode structure of the linearly unstable
ion-temperature-gradient (ITG) mode with adiabatic electrons. The simulations
presented here employ the s- tokamak equilibrium model. Local
gyrokinetic calculations, using GS2 have been performed over a range of radial
surfaces, x, and for ballooning phase angle, p, in the range -, to map out the complex local mode frequency, . Assuming a quadratic radial profile for the
drive, namely , (holding constant all other equilibrium
profiles such as safety factor, magnetic shear etc.), has a
stationary point. The reconstructed global mode then sits on the outboard mid
plane of the tokamak plasma, and is known as a conventional or isolated mode,
with global growth rate, ~ Max[], where
is the local growth rate. Taking the radial variation in
other equilibrium profiles (e.g safety factor q(x)) into account, removes the
stationary point in and results in a mode that peaks
slightly away from the outboard mid-plane with a reduced global growth rate.
Finally, the influence of flow shear has also been investigated through a
Doppler shift, , where n
is the toroidal mode number and incorporates the effect of
flow shear. The equilibrium profile variation introduces an asymmetry to the
growth rate spectrum with respect to the sign of ,
consistent with recent global gyrokinetic calculations.Comment: 10 pages, 8 figures and 1 tabl
The case for negative senescence
Negative senescence is characterized by a decline in mortality with age after reproductive maturity, generally accompanied by an increase in fecundity. Hamilton (1966) ruled out negative senescence: we adumbrate the deficiencies of his model. We review empirical studies of various plants and some kinds of animals that may experience negative senescence and conclude that negative senescence may be widespread, especially in indeterminate-growth species for which size and fertility increase with age. We develop optimization models of life-history strategies that demonstrate that negative senescence is theoretically possible. More generally, our models contribute to understanding of the evolutionary and demographic forces that mold the agetrajectories of mortality, fertility and growth.
Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance
Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature distributions throughout the system, and (4) performance parameters such as thrust coefficient, specific impulse, mass flow rates, and equivalence ratio. Preliminary results are in good agreement with available performance data for systems resembling the NASP vehicle configuration
Glycogen and its metabolism: some new developments and old themes
Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease
Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment
Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid
Development of a theory of the spectral reflectance of minerals, part 2
Theory of diffuse reflectance of particulate media including garnet, glass, corundum powders, and mixture
- …
