23 research outputs found

    Sensorimotor Experience Influences Recovery of Forelimb Abilities but Not Tissue Loss after Focal Cortical Compression in Adult Rats

    Get PDF
    Sensorimotor activity has been shown to play a key role in functional outcome after extensive brain damage. This study was aimed at assessing the influence of sensorimotor experience through subject-environment interactions on the time course of both lesion and gliosis volumes as well as on the recovery of forelimb sensorimotor abilities following focal cortical injury. The lesion consisted of a cortical compression targeting the forepaw representational area within the primary somatosensory cortex of adult rats. After the cortical lesion, rats were randomly subjected to various postlesion conditions: unilateral C5–C6 dorsal root transection depriving the contralateral cortex from forepaw somatosensory inputs, standard housing or an enriched environment promoting sensorimotor experience and social interactions. Behavioral tests were used to assess forelimb placement during locomotion, forelimb-use asymmetry, and forepaw tactile sensitivity. For each group, the time course of tissue loss was described and the gliosis volume over the first postoperative month was evaluated using an unbiased stereological method. Consistent with previous studies, recovery of behavioral abilities was found to depend on post-injury experience. Indeed, increased sensorimotor activity initiated early in an enriched environment induced a rapid and more complete behavioral recovery compared with standard housing. In contrast, severe deprivation of peripheral sensory inputs led to a delayed and only partial sensorimotor recovery. The dorsal rhizotomy was found to increase the perilesional gliosis in comparison to standard or enriched environments. These findings provide further evidence that early sensory experience has a beneficial influence on the onset and time course of functional recovery after focal brain injury

    Housing in an enriched environment : A tool to study functional recovery after experimental stroke

    No full text
    Physical therapy and social interactions between the stroke patient and health care professionals or relatives facilitate the process of recovery and promote the improvement of neurological function after stroke. These observations can be mimicked in the experimental setting with the concept of enriched environment. The enriched environment is a housing condition for rodents combining social interactions and sensorimotor stimulation that improves neurological function without affecting the extent of brain damage after experimental stroke. This chapter deals with the concept of enriched housing and performing studies using enriched environment as a tool to investigate mechanisms of recovery after brain injury

    Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats

    No full text
    Housing rats in an enriched environment improves functional outcome after ischemic stroke, this may reflect neuronal plasticity in brain regions outside the lesion. Which components of the enriched environment that are of greatest importance for recovery after brain ischemia is uncertain. We have previously found that enriched environment and social interaction alone both improve functional recovery after focal cerebral ischemia, compared with isolated housing with voluntary wheel-running. In this study, the aim was to separate components of the enriched environment and investigate the effects on some potential mediators of improved functional recovery; such as the inducible transcription factors nerve growth factor-induced gene A (NGFI-A) and NGFI-B, and the glucocorticoid and serotonin systems. After permanent middle cerebral artery occlusion, rats were divided into four groups: individually housed with no equipment (deprived group), individually housed with free access to a running wheel (running group), housed together in a large cage with no equipment (social group) or in a large cage furnished with exchangeable bars, chains and other objects (enriched group). mRNA expression of inducible transcription factors, serotonin and glucocorticoid receptors was determined with in situ hybridisation 1 month after cerebral ischemia. Rats housed in enriched or social environments showed significantly higher mRNA expression of NGFI-A and NGFI-B in cortical regions outside the lesion and in the CA1 (cornu ammonis region of the hippocampus), compared with isolated rats with or without a running wheel. NGFI-A and NGFI-B mRNA expression in cortex and in CA1 was significantly correlated to functional outcome. 5-Hydroxytryptamine receptor 1A (5-HT1A) mRNA expression and binding, as well as 5-HT2A receptor mRNA expression were decreased in the hippocampus (CA4 region) of the running wheel rats. Mineralocorticoid receptor gene expression was increased in the dentate gyrus amongst wheel-running rats. No group differences were found in plasma corticosterone levels or mRNA levels of glucocorticoid receptor, corticotropin-releasing hormone, 5-HT2C or c-fos. In conclusion, we have found that social interaction is a major component of the enriched environment regarding the effects on NGFI-A and NGFI-B expression. These transcription factors may be important mediators of improved functional recovery after brain infarctions, induced by environmental enrichment. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved

    A refined blood collection method for quantifying corticosterone

    No full text
    In many rodent laboratories, blood samples are collected from rats using the tail vein nick procedure and analyzed to quantify blood corticosterone levels as an indicator of stress. The standard method of corticosterone quantification often requires the collection of a relatively large volume of blood, followed by the extraction of the blood plasma. An alternative blood sampling method requires the collection of only a drop of blood on paper (the \u27drop\u27 method), minimizing handling of the animals, and does not require plasma extraction. The authors aimed to validate the drop method of blood sampling for use in corticosterone quantification. They induced stress in rats by cerebral ischemia, collected blood samples at various intervals using both the drop method and the plasma extraction method and then quantified corticosterone by radioimmunoassay. Corticosterone levels of the ischemic rats were compared with those of sham-operated rats and those of ischemic rats that had been given metyrapone, a glucocorticoid synthesis inhibitor, prior to vessel occlusion. Blood corticosterone levels in the samples obtained from the same animal using the two different methods were highly correlated for all rats. The authors further provide a regression model that can be used to predict plasma corticosterone values from those obtained from the drop blood samples. Quantification of corticosterone from only a small drop of blood has many practical and ethical advantages and should be considered as an alternative to standard methods

    The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis

    Get PDF
    Background: Exercise-based therapy is known to enhance motor recovery after stroke but the most appropriate amount, i.e. the dose, of therapy is unknown. To determine the strength of current evidence for provision of a higher dose of the same types of exercise-based therapy to enhance motor recovery after stroke. Methods: An electronic search of: MEDLINE, EMBASE, CINHAL, AMED, and CENTRAL was undertaken. Two independent reviewers selected studies using predetermined inclusion criteria: randomised or quasi randomised controlled trials with or without blinding of assessors; adults, 18+ years, with a clinical diagnosis of stroke; experimental and control group interventions identical except for dose; exercise-based interventions investigated; and outcome measures of motor impairment, movement control or functional activity. Two reviewers independently extracted outcome and follow-up data. Effect sizes and 95% confidence intervals were interpreted with reference to risk of bias in included studies. Results: 9 papers reporting 7 studies were included. Only 3 of the 7 included studies had all design elements assessed as low risk of bias. Intensity of the control intervention ranged from a mean of 9 to 28 hours over a maximum of 20 weeks. Experimental groups received between 14 and 92 hours of therapy over a maximum of 20 weeks. The included studies were heterogeneous with respect to types of therapy, outcome measures and time-points for outcome and follow-up. Consequently, most effect sizes relate to one study only. Single study effect sizes suggest a trend for better recovery with increased dose at the end of therapy but this trend was less evident at follow-up Meta-analysis was possible at outcome for: hand-grip strength, -10.1 [-19.1,-1.2] (2 studies, 97 participants); Action Research Arm Test (ARAT), 0.1 [-5.7,6.0] (3 studies, 126 participants); and comfortable walking speed, 0.3 [0.1,0.5] (2 studies, 58 participants). At follow-up, between 12 and 26 weeks after start of therapy, meta-analysis findings were: Motricity Arm, 10.7 [1.7,19.8] (2 studies, 83 participants); ARAT, 2.2 [-6.0,10.4] (2 studies, 83 participants); Rivermead Mobility, 1.0 [-0.6, 2.5] (2 studies, 83 participants); and comfortable walking speed, 0.2 [0.0,0.4] (2 studies, 60 participants). Conclusions: Current evidence provides some, but limited, support for the hypothesis that a higher dose of the same type of exercised-based therapy enhances motor recovery after stroke. Prospective dose-finding studies are required

    A novel approach to induction and rehabilitation of deficits in forelimb function in a rat model of ischemic stroke

    No full text
    Aim: Constraint-induced movement therapy (CIMT), which forces use of the impaired arm following unilateral stroke, promotes functional recovery in the clinic but animal models of CIMT have yielded mixed results. The aim of this study is to develop a refined endothelin-1 (ET-1) model of focal ischemic injury in rats that resulted in reproducible, well-defined lesions and reliable upper extremity impairments, and to determine if an appetitively motivated form of rehabilitation (voluntary forced use movement therapy; FUMT) would accelerate post-ischemic motor recovery. Methods: Male Sprague Dawley rats (3 months old) were given multiple intracerebral microinjections of ET-1 into the sensorimotor cortex and dorsolateral striatum. Sham-operated rats received the same surgical procedure up to but not including the drill holes on the skull. Functional deficits were assessed using two tests of forelimb placing, a forelimb postural reflex test, a forelimb asymmetry test, and a horizontal ladder test. In a separate experiment ET-1 stroke rats were subjected to daily rehabilitation with FUMT or with a control therapy beginning on post-surgery d 5. Performance and post-mortem analysis of lesion volume and regional BDNF expression were measured. Results: Following microinjections of ET-1 animals exhibited significant deficits in contralateral forelimb function on a variety of tests compared with the sham group. These deficits persisted for up to 20 d with no mortality and were associated with consistent lesion volumes. FUMT therapy resulted in a modest but significantly accelerated recovery in the forelimb function as compared with the control therapy, but did not affect lesion size or BDNF expression in the ipsilesional hemisphere. Conclusion: We conclude that refined ET-1 microinjection protocols and forcing use of the impaired forelimb in an appetitively motivated paradigm may prove useful in developing strategies to study post-ischemic rehabilitation and neuroplasticity
    corecore