864 research outputs found

    Supersymmetric quantum theory and (non-commutative) differential geometry

    Get PDF
    We reconsider differential geometry from the point of view of the quantum theory of non-relativistic spinning particles, which provides examples of supersymmetric quantum mechanics. This enables us to encode geometrical structure in algebraic data consisting of an algebra of functions on a manifold and a family of supersymmetry generators represented on a Hilbert space. We show that known types of differential geometry can be classified in terms of the supersymmetries they exhibit. Replacing commutative algebras of functions by non-commutative *-algebras of operators, while retaining supersymmetry, we arrive at a formulation of non-commutative geometry encompassing and extending Connes' original approach. We explore different types of non-commutative geometry and introduce notions of non-commutative manifolds and non-commutative phase spaces. One of the main motivations underlying our work is to construct mathematical tools for novel formulations of quantum gravity, in particular for the investigation of superstring vacua.Comment: 125 pages, Plain TeX fil

    Dilogarithm Identities in Conformal Field Theory

    Full text link
    Dilogarithm identities for the central charges and conformal dimensions exist for at least large classes of rational conformally invariant quantum field theories in two dimensions. In many cases, proofs are not yet known but the numerical and structural evidence is convincing. In particular, close relations exist to fusion rules and partition identities. We describe some examples and ideas, and present some conjectures useful for the classification of conformal theories. The mathematical structures seem to be dual to Thurston's program for the classification of 3-manifolds.Comment: 14 pages, BONN-preprint. (a few minor changes, two major corrections in chapter 3, namely: (3.10) only holds in the case of the A series, Goncharovs conjecture is not an equivalence but rather an implication and a theorem

    Non-commutative World-volume Geometries: Branes on SU(2) and Fuzzy Spheres

    Get PDF
    The geometry of D-branes can be probed by open string scattering. If the background carries a non-vanishing B-field, the world-volume becomes non-commutative. Here we explore the quantization of world-volume geometries in a curved background with non-zero Neveu-Schwarz 3-form field strength H = dB. Using exact and generally applicable methods from boundary conformal field theory, we study the example of open strings in the SU(2) Wess-Zumino-Witten model, and establish a relation with fuzzy spheres or certain (non-associative) deformations thereof. These findings could be of direct relevance for D-branes in the presence of Neveu-Schwarz 5-branes; more importantly, they provide insight into a completely new class of world-volume geometries.Comment: 19 pages, LaTeX, 1 figure; some explanations improved, references adde

    Supersymmetric quantum theory and non-commutative geometry

    Full text link
    Classical differential geometry can be encoded in spectral data, such as Connes' spectral triples, involving supersymmetry algebras. In this paper, we formulate non-commutative geometry in terms of supersymmetric spectral data. This leads to generalizations of Connes' non-commutative spin geometry encompassing non-commutative Riemannian, symplectic, complex-Hermitian and (Hyper-)Kaehler geometry. A general framework for non-commutative geometry is developed from the point of view of supersymmetry and illustrated in terms of examples. In particular, the non-commutative torus and the non-commutative 3-sphere are studied in some detail.Comment: 77 pages, PlainTeX, no figures; present paper is a significantly extended version of the second half of hep-th/9612205. Assumptions in Sect. 2.2.5 clarified; final version to appear in Commun.Math.Phy

    Exceptional boundary states at c=1

    Get PDF
    We consider the CFT of a free boson compactified on a circle, such that the compactification radius RR is an irrational multiple of RselfdualR_{selfdual}. Apart from the standard Dirichlet and Neumann boundary states, Friedan suggested [1] that an additional 1-parameter family of boundary states exists. These states break U(1) symmetry of the theory, but still preserve conformal invariance. In this paper we give an explicit construction of these states, show that they are uniquely determined by the Cardy-Lewellen sewing constraints, and we study the spectrum in the `open string channel', which is given here by a continous integral with a nonnegative measure on the space of conformal weights.Comment: 18 pages; v2 corrected assumptions (now weaker), results unchange

    Quantum rolling tachyon

    Full text link
    We consider the quantum treatment of the rolling tachyon background describing the decay of D-branes in the limit of weak string coupling. We focus on the propagation of an open string in the fluctuating background and show how the boundary string action is modified by quantum effects. A bilocal term in the boundary action is generated which, however, does not spoil the vanishing of the β\beta function at one loop. The propagation of an open string for large times is found to be very strongly suppressed.Comment: 13 page

    D-branes in the WZW model

    Get PDF
    It is stated in the literature that D-branes in the WZW-model associated with the gluing condition J = - \bar{J} along the boundary correspond to branes filling out the whole group volume. We show instead that the end-points of open strings are rather bound to stay on `integer' conjugacy classes. In the case of SU(2) level k WZW model we obtain k-1 two dimensional Euclidean D-branes and two D particles sitting at the points e and -e.Comment: 2 pages, LaTe

    Edge Critical Behaviour of the 2-Dimensional Tri-critical Ising Model

    Full text link
    Using previous results from boundary conformal field theory and integrability, a phase diagram is derived for the 2 dimensional Ising model at its bulk tri-critical point as a function of boundary magnetic field and boundary spin-coupling constant. A boundary tri-critical point separates phases where the spins on the boundary are ordered or disordered. In the latter range of coupling constant, there is a non-zero critical field where the magnetization is singular. In the former range, as the temperature is lowered, the boundary undergoes a first order transition while the bulk simultaneously undergoes a second order transition.Comment: 6 pages, RevTex, 3 postscript figure
    corecore