research

Supersymmetric quantum theory and (non-commutative) differential geometry

Abstract

We reconsider differential geometry from the point of view of the quantum theory of non-relativistic spinning particles, which provides examples of supersymmetric quantum mechanics. This enables us to encode geometrical structure in algebraic data consisting of an algebra of functions on a manifold and a family of supersymmetry generators represented on a Hilbert space. We show that known types of differential geometry can be classified in terms of the supersymmetries they exhibit. Replacing commutative algebras of functions by non-commutative *-algebras of operators, while retaining supersymmetry, we arrive at a formulation of non-commutative geometry encompassing and extending Connes' original approach. We explore different types of non-commutative geometry and introduce notions of non-commutative manifolds and non-commutative phase spaces. One of the main motivations underlying our work is to construct mathematical tools for novel formulations of quantum gravity, in particular for the investigation of superstring vacua.Comment: 125 pages, Plain TeX fil

    Similar works

    Available Versions

    Last time updated on 11/12/2019