5,072 research outputs found
Non-steller light from high-redshift radiogalaxies
With the aid of a new IRCAM image of 3C356, researchers question the common assumption that radiosource-stimulated starbursts are responsible for the extended optical emission aligned with radio structures in high-redshift radiogalaxies. They propose an alternative model in which the radiation from a hidden luminous quasar is beamed along the radio axis and illuminates dense clumps of cool gas to produce both extended narrow emission line regions and, by Thomson scattering, extended optical continua. Simple observational tests of this model are possible and necessary if we are to continue to accept that the color, magnitude and shape evolution of radiogalaxies are controlled by the active evolution of stellar populations
Stochastic simulation of catalytic surface reactions in the fast diffusion limit
The master equation of a lattice gas reaction tracks the probability of visiting all spatial configurations. The large number of unique spatial configurations on a lattice renders master equation simulations infeasible for even small lattices. In this work, a reduced master equation is derived for the probability distribution of the coverages in the infinite diffusion limit. This derivation justifies the widely used assumption that the adlayer is in equilibrium for the current coverages and temperature when all reactants are highly mobile. Given the reduced master equation, two novel and efficient simulation methods of lattice gas reactions in the infinite diffusion limit are derived. The first method involves solving the reduced master equation directly for small lattices, which is intractable in configuration space. The second method involves reducing the master equation further in the large lattice limit to a set of differential equations that tracks only the species coverages. Solution of the reduced master equation and differential equations requires information that can be obtained through short, diffusion-only kinetic Monte Carlo simulation runs at each coverage. These simulations need to be run only once because the data can be stored and used for simulations with any set of kinetic parameters, gas-phase concentrations, and initial conditions. An idealized CO oxidation reaction mechanism with strong lateral interactions is used as an example system for demonstrating the reduced master equation and deterministic simulation techniques
Two classes of quasi-steady-state model reductions for stochastic kinetics
The quasi-steady-state approximation (QSSA) is a model reduction technique used to remove highly reactive species from deterministic models of reaction mechanisms. In many reaction networks the highly reactive intermediates (QSSA species) have populations small enough to require a stochastic representation. In this work we apply singular perturbation analysis to remove the QSSA species from the chemical master equation for two classes of problems. The first class occurs in reaction networks where all the species have small populations and the QSSA species sample zero the majority of the time. The perturbation analysis provides a reduced master equation in which the highly reactive species can sample only zero, and are effectively removed from the model. The reduced master equation can be sampled with the Gillespie algorithm. This first stochastic QSSA reduction is applied to several example reaction mechanisms (including Michaelis-Menten kinetics) [Biochem. Z. 49, 333 (1913)]. A general framework for applying the first QSSA reduction technique to new reaction mechanisms is derived. The second class of QSSA model reductions is derived for reaction networks where non-QSSA species have large populations and QSSA species numbers are small and stochastic. We derive this second QSSA reduction from a combination of singular perturbation analysis and the Omega expansion. In some cases the reduced mechanisms and reaction rates from these two stochastic QSSA models and the classical deterministic QSSA reduction are equivalent; however, this is not usually the case
Understanding The Environmental Contexts Of Boys And Young Men Of Color
This essay provides a framework for understanding how various settings influence lives of boys and young men of color. Failure to take these environments into account treats the problems experienced by this group as entirely of their own making and ignores the role that external forces play in contributing to poor outcomes. This essay provides a context for future research and analysis, in hopes that it will examine the lives and circumstances of boys and young men of color using more complex and nuanced perspectives
Rotation of the pre-stellar core L1689B
The search for the onset of star formation in pre-stellar cores has focussed
on the identification of an infall signature in the molecular line profiles of
tracer species. The classic infall signature is a double peaked line profile
with an asymmetry in the strength of the peaks such that the blue peak is
stronger. L1689B is a pre-stellar core and infall candidate but new JCMT HCO+
line profile data, presented here, confirms that both blue and red asymmetric
line profiles are present in this source. Moreover, a dividing line can be
drawn between the locations where each type of profile is found. It is argued
that it is unlikely that the line profiles can be interpreted with simple
models of infall or outflow and that rotation of the inner regions is the most
likely explanation. A rotational model is developed in detail with a new 3D
molecular line transport code and it is found that the best type of model is
one in which the rotational velocity profile is in between solid body and
Keplerian. It is firstly shown that red and blue asymmetric line profiles can
be generated with a rotation model entirely in the absence of any infall
motion. The model is then quantitively compared with the JCMT data and an
iteration over a range of parameters is performed to minmize the difference
between the data and model. The results indicate that rotation can dominate the
line profile shape even before the onset of infall.Comment: Accepted by MNRAS, 7 pages, 4 figure
A study of methanol and silicon monoxide production through episodic explosions of grain mantles in the Central Molecular Zone
Methanol (CHOH) is found to be abundant and widespread towards the
Central Molecular Zone, the inner few hundred parsecs of our Galaxy. Its origin
is, however, not fully understood. It was proposed that the high cosmic ray
ionisation rate in this region could lead to a more efficient non-thermal
desorption of this species formed on grain surfaces, but it would also mean
that this species is destroyed in a relatively short timescale. In a first
step, we run chemical models with a high cosmic ray ionisation rate and find
that this scenario can only reproduce the lowest abundances of methanol derived
in this region (10-10). In a second step, we investigate
another scenario based on episodic explosions of grain mantles. We find a good
agreement between the predicted abundances of methanol and the observations. We
find that the dominant route for the formation of methanol is through
hydrogenation of CO on the grains followed by the desorption due to the grain
mantle explosion. The cyclic aspect of this model can explain the widespread
presence of methanol without requiring any additional mechanism. We also model
silicon monoxide (SiO), another species detected in several molecular clouds of
the Galactic Centre. An agreement is found with observations for a high
depletion of Si (Si/H 10) with respect to the solar abundance.Comment: Accepted in MNRA
Desorption From Interstellar Ices
The desorption of molecular species from ice mantles back into the gas phase
in molecular clouds results from a variety of very poorly understood processes.
We have investigated three mechanisms; desorption resulting from H_2 formation
on grains, direct cosmic ray heating and cosmic ray induced photodesorption.
Whilst qualitative differences exist between these processes (essentially
deriving from the assumptions concerning the species-selectivity of the
desorption and the assumed threshold adsorption energies, E_t) all three
processes are found to be potentially very significant in dark cloud
conditions. It is therefore important that all three mechanisms should be
considered in studies of molecular clouds in which freeze-out and desorption
are believed to be important.
Employing a chemical model of a typical static molecular core and using
likely estimates for the quantum yields of the three processes we find that
desorption by H_2 formation probably dominates over the other two mechanisms.
However, the physics of the desorption processes and the nature of the dust
grains and ice mantles are very poorly constrained. We therefore conclude that
the best approach is to set empirical constraints on the desorption, based on
observed molecular depletions - rather than try to establish the desorption
efficiencies from purely theoretical considerations. Applying this method to
one such object (L1689B) yields upper limits to the desorption efficiencies
that are consistent with our understanding of these mechanisms.Comment: 11 pages, 5 figures, accepted by MNRAS subject to minor revision
which has been carried ou
- …
