21 research outputs found

    Quantum Dots Do Not Affect the Behaviour of Mouse Embryonic Stem Cells and Kidney Stem Cells and Are Suitable for Short-Term Tracking

    Get PDF
    Quantum dots (QDs) are small nanocrystals widely used for labelling cells in order to enable cell tracking in complex environments in vitro, ex vivo and in vivo. They present many advantages over traditional fluorescent markers as they are resistant to photobleaching and have narrow emission spectra. Although QDs have been used effectively in cell tracking applications, their suitability has been questioned by reports showing they can affect stem cell behaviour and can be transferred to neighbouring cells. Using a variety of cellular and molecular biology techniques, we have investigated the effect of QDs on the proliferation and differentiation potential of two stem cell types: mouse embryonic stem cells and tissue-specific stem cells derived from mouse kidney. We have also tested if QDs released from living or dead cells can be taken up by neighbouring cells, and we have determined if QDs affect the degree of cell-cell fusion; this information is critical in order to assess the suitability of QDs for stem cell tracking. We show here that QDs have no effect on the viability, proliferation or differentiation potential of the two stem cell types. Furthermore, we show that the extent of transfer of QDs to neighbouring cells is <4%, and that QDs do not increase the degree of cell-cell fusion. However, although the QDs have a high labelling efficiency (>85%), they are rapidly depleted from both stem cell populations. Taken together, our results suggest that QDs are effective cell labelling probes that are suitable for short-term stem cell tracking

    Engineering kidneys from simple cell suspensions:an exercise in self-organization

    Get PDF
    Increasing numbers of people approaching and living with end-stage renal disease and failure of the supply of transplantable kidneys to keep pace has created an urgent need for alternative sources of new organs. One possibility is tissue engineering of new organs from stem cells. Adult kidneys are arguably too large and anatomically complex for direct construction, but engineering immature kidneys, transplanting them, and allowing them to mature within the host may be more feasible. In this review, we describe a technique that begins with a suspension of renogenic stem cells and promotes these cells’ self-organization into organ rudiments very similar to foetal kidneys, with a collecting duct tree, nephrons, corticomedullary zonation and extended loops of Henle. The engineered rudiments vascularize when transplanted to appropriate vessel-rich sites in bird eggs or adult animals, and show preliminary evidence for physiological function. We hope that this approach might one day be the basis of a clinically useful technique for renal replacement therapy

    Experimental tubulogenesis induction model in the mouse

    No full text
    Abstract Kidney development and induction of tubulogenesis have been studied for almost seven decades. The experimental setup of metanephric mesenchyme induction ex vivo allows to control the environment, to perform cellular manipulations, and to learn about renal development. Since the establishment of the ex vivo kidney culture technique in 1953, the method was modified to suit well the progress in biological and medical fields and still today present many advantages over the traditional in vivo studies

    Embryonic stem cells derived kidney organoids as faithful models to target programmed nephrogenesis

    No full text
    Abstract The kidney is a complex organ that is comprised of thousands of nephrons developing through reciprocal inductive interactions between metanephric mesenchyme (MM) and ureteric bud (UB). The MM undergoes mesenchymal to epithelial transition (MET) in response to the signaling from the UB. The secreted protein Wnt4, one of the Wnt family members, is critical for nephrogenesis as mouse Wnt4−/− mutants fail to form pretubular aggregates (PTA) and therefore lack functional nephrons. Here, we generated mouse embryonic stem cell (mESC) line lacking Wnt4 by applying the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9). We describe here, differentiation of the wild type and Wnt4 knockout mESCs into kidney progenitors, and such cells induced to undergo nephrogenesis by the mouse E11.5 UB mediated induction. The wild type three-dimensional (3D) self-organized organoids depict appropriately segmented nephron structures, while the Wnt4-deficient organoids fail to undergo the MET, as is the case in the phenotype of the Wnt4 knockout mouse model in vivo. In summary, we have established a platform that combine CRISPR/Cas9 and kidney organoid technologies to model kidney development in vitro and confirmed that mutant organoids are able to present similar actions as in the in vivo studies

    Mouse embryonic stem cell-derived ureteric bud progenitors induce nephrogenesis

    No full text
    Abstract Generation of kidney organoids from pluripotent stem cells (PSCs) is regarded as a potentially powerful way to study kidney development, disease, and regeneration. Direct differentiation of PSCs towards renal lineages is well studied; however, most of the studies relate to generation of nephron progenitor population from PSCs. Until now, differentiation of PSCs into ureteric bud (UB) progenitor cells has had limited success. Here, we describe a simple, efficient, and reproducible protocol to direct differentiation of mouse embryonic stem cells (mESCs) into UB progenitor cells. The mESC-derived UB cells were able to induce nephrogenesis when co-cultured with primary metanephric mesenchyme (pMM). In generated kidney organoids, the embryonic pMM developed nephron structures, and the mESC-derived UB cells formed numerous collecting ducts connected with the nephron tubules. Altogether, our study established an uncomplicated and reproducible platform to generate ureteric bud progenitors from mouse embryonic stem cells

    Deciphering the minimal quantity of mouse primary cells to undergo nephrogenesis ex vivo

    No full text
    Abstract Background: Tissue organoids derived from primary cells have high potential for studying organ development and diseases in numerous organs. They recreate the morphological structure and mimic the functions of given organ while being compact in size, easy to produce, and suitable for use in various experimental setups. Results: In this study we established the number of cells that form mouse kidney rudiments at E11.5, and generated renal organoids of various sizes from the mouse primary cells of the metanephric mesenchyme (MM). We investigated the ability of renal organoids to undergo nephrogenesis upon Wnt/ β-catenin pathway—mediated tubule induction with a GSK-3 inhibitor (BIO) or by initiation through the ureteric bud (UB). We found that 5000 cells of MM cells are necessary to successfully form renal organoids with well-structured nephrons as judged by fluorescent microscopy, transmission electron microscopy (TEM), and quantitative Polymerase Chain Reaction (qPCR). These mouse organoids also recapitulated renal secretion function in the proximal tubules. Conclusions: We show that a significant decrease of cells used to generate renal mouse organoids in a dissociation/re-aggregation assay, does not interfere with development, and goes toward 3Rs. This enables generation of more experimental samples with one mouse litter, limiting the number of animals used for studies

    Exosomes as secondary inductive signals involved in kidney organogenesis

    No full text
    Abstract The subfraction of extracellular vesicles, called exosomes, transfers biological molecular information not only between cells but also between tissues and organs as nanolevel signals. Owing to their unique properties such that they contain several RNA species and proteins implicated in kidney development, exosomes are putative candidates to serve as developmental programming units in embryonic induction and tissue interactions. We used the mammalian metanephric kidney and its nephron-forming mesenchyme containing the nephron progenitor/stem cells as a model to investigate if secreted exosomes could serve as a novel type of inductive signal in a process defined as embryonic induction that controls organogenesis. As judged by several characteristic criteria, exosomes were enriched and purified from a cell line derived from embryonic kidney ureteric bud (UB) and from primary embryonic kidney UB cells, respectively. The cargo of the UB-derived exosomes was analysed by qPCR and proteomics. Several miRNA species that play a role in Wnt pathways and enrichment of proteins involved in pathways regulating the organization of the extracellular matrix as well as tissue homeostasis were identified. When labelled with fluorescent dyes, the uptake of the exosomes by metanephric mesenchyme (MM) cells and the transfer of their cargo to the cells can be observed. Closer inspection revealed that besides entering the cytoplasm, the exosomes were competent to also reach the nucleus. Furthermore, fluorescently labelled exosomal RNA enters into the cytoplasm of the MM cells. Exposure of the embryonic kidney-derived exosomes to the whole MM in an ex vivo organ culture setting did not lead to an induction of nephrogenesis but had an impact on the overall organization of the tissue. We conclude that the exosomes provide a novel signalling system with an apparent role in secondary embryonic induction regulating organogenesis
    corecore