151 research outputs found

    PERBEDAAN PUTUSAN MAHKAMAH AGUNG DAN BAWASLU KOTA MAKASSAR DALAM SENGKETA PILWALI KOTA MAKASSAR TAHUN 2018

    Get PDF
    Putusan Bawaslu Kota Makassar dan Putusan PTTUN yang dikuatkan oleh Putusan Mahkamah Agung terkait sengketa Pemilihan Kepala Daerah (Pilkada) Kota Makassar Tahun 2018 telah menimbulkan polemik dan silang pendapat ditengah-tengah masyarakat, perbedaan tersebut menarik diteliti untuk mengetahui titik perbedaan dari dua putusan tersebut. Jenis penelitian yang digunakan adalah penelitian yuridis normatif, dengan pendekatan perundang-undangan. Sumber data berupa data primer dan data sekunder, data yang diperoleh kemudian dianalisis secara kualitatif untuk memperoleh kesimpulan. Hasil penelitian menunjukkan bahwa, perbedaan dari kedua putusan tersebut diakibatkan oleh perbedaan dalam menilai tindakan calon Walikota Makassar Moh. Ramadhan Pomanto yang berstatus sebagai petahana. Bawaslu Kota Makassar menilai bahwa Moh. Ramadhan Pomanto tidak terbukti menggunakan kewenangan, program, dan kegiatan yang patut dinyatakan menguntungkan pasangan calon dirinya dan merugikan kepentingan pasangan calon lain dalam waktu 6 (enam) bulan sebelum tanggal penetapan pasangan calon. Sementara PTTUN dan Mahkamah Agung dalam amar putusannya justru berpendapat bahwa Moh. Ramadhan Pomanto terbukti menggunakan kewenangannya yang menguntungkan dirinya sebagai petahana dan merugikan calon pasangan lainnya. Sedangkan dalam implementasinya, Komisi Pemilihan Umum Kota Makassar memilih menjalankan putusan Mahkamah Agung dan menegasikan Putusan Bawaslu Kota Makassar.Kata Kunci: Bawaslu; Mahkamah Agung; Pilkada Makassar; Putusan; Sengket

    Detection of VIM-1 and IMP-1 genes in Klebsiella pneumoniae and relationship with biofilm formation

    Get PDF
    Klebsiella pneumoniae is an important human pathogen that is considered in recent years due to nosocomial infections resistant to treatment as well as the ability to form biofilms particularly in patients with urinary tract infection in ICU or hospital. The aim of this study was to evaluate the prevalence of VIM1, IMP1 genes and their ability to form biofilm in K. pneumoniae strains isolated from patients with urinary tract infection. In the study, using culture and biochemical methods, 1807 K. pneumoniae samples were isolated from patients with urinary tract infection hospitalized or referred to hospitals in Qom in 2013–2014. For isolation of MBL producing isolates, Double Disk Synergy Test (DDST) was used. Then MBL positive isolates were examined for the presence of VIM1, IMP1 genes using PCR method. Furthermore, all strains were investigated for biofilm formation by phenotypic microplate method. From 3165 urine samples cultured, 1807 isolates of K. pneumoniae were isolated and 109 strains (93.2%) were positive for MBL enzymes production. PCR results showed that the prevalence of VIM1 and IMP1 genes are 15.6 and 6.4%, respectively. The Phenotypic method indicated that 91.2% of isolates formed biofilm. Biofilm formation in K. pneumoniae isolates is high and there is a significant relationship between strong biofilm formation and prevalence of VIM1 and IMP1 genes. Also due to the presence of MBL genes in K. pneumoniae and horizontal transfer of genes to other bacteria, and to control the indiscriminate use of antibiotics, the hospital infection control methods must be considered

    Theoretical studies on the quercetin interactions in the oil-in-water F127 microemulsion: A DFT and MD investigation

    Get PDF
    Quercetin (Q) has attracted the attention of researchers for potential applications in advanced therapeutic treatments due to its antioxidant attributes and renal tissue improvement. F127-based oil-in-water microemulsions improved the bioavailability of Q and showed greater retention and more stable release. In this study, Q-loaded microemulsion was designed with the help of simulation techniques. The mechanism of action of Q was investigated in the bulk and microemulsion forms. The simulation results show the fast accumulation of Q molecules around 2,2-diphenyl-1-picrylhydrazyl (DPPH) molecules (free radicals) in bulk form and the slow accumulation of Q molecules around DPPH in microemulsion form. The stable release of Q in microemulsion form was found to be due to the powerful van der Waals (vdW) interactions between Q and F127. For a better and deeper understanding of the nature of mutual interactions between Q (enol and keto forms) and F127, quantum mechanical calculations were performed at the B3LYP/6-31G(d,p) level of theory. In particular, atoms in molecules (AIM) and natural bond orbital (NBO) analyses were performed to evaluate the strength of the interactions between Q and F127. The results showed that the formation of a strong hydrogen bond (HB) between Qenol and F127 stabilizes the microemulsion system and can contribute to the better performance of Q microemulsion compared to free Q in bulk

    pH-Responsive PVA-Based Nanofibers Containing GO Modified with Ag Nanoparticles: Physico-Chemical Characterization, Wound Dressing, and Drug Delivery

    Get PDF
    Site-specific drug delivery and carrying repairing agents for wound healing purposes can be achieved using the intertwined three-dimensional structure of nanofibers. This study aimed to optimize and fabricate poly (vinyl alcohol) (PVA)-graphene oxide (GO)-silver (Ag) nanofibers containing curcumin (CUR) using the electrospinning method for potential wound healing applications. Fourier Transform Infrared (FTIR) spectrophotometry, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and zeta potential were used to characterize the nanostructures. The mechanical properties of the nanostructures were subsequently examined by tensile strength and elongation test. As shown by MIC analysis of E. coli and S. aureus bacteria, the fabricated nanofibers had superior inhibitory effects on the bacteria growth. Ag nanoparticles incorporation into the nanofibers resulted in increased loading and encapsulation efficiencies from 21% to 56% and from 61% to 86%, respectively. CUR release from PVA/GO-Ag-CUR nanofiber at pH 7.4 was prevented, while the acidic microenvironment (pH 5.4) increased the release of CUR from PVA/GO-Ag-CUR nanofiber, corroborating the pH-sensitivity of the nanofibers. Using the in vitro wound healing test on NIH 3T3 fibroblast cells, we observed accelerated growth and proliferation of cells cultured on PVA/GO-Ag-CUR nanofibers

    Applications of Bioceramics in the Management of Orbital Floor Fractures and Anophthalmic Cavity: A Review

    Get PDF
    Biocompatible ceramics, commonly known as “bioceramics”, are an extremely versatile class of materials with a wide range of applications in modern medicine. Given the inorganic nature and physico-mechanical properties of most bioceramics, which are relatively close to the mineral phase of bone, orthopedics and dentistry are the preferred areas of usage for such biomaterials. Another clinical field where bioceramics play an important role is oculo-orbital surgery, a highly cross-and interdisciplinary medical specialty addressing to the management of injured eye orbit, with particular focus on the repair of orbital bone fractures and/or the placement of orbital implants following removal of a diseased eye. In the latter case, orbital implants are not intended for bone repair but, being placed inside the ocular cavity, have to be biointegrated in soft ocular tissues. This article reviews the state of the art of currently-used bioceramics in orbital surgery, highlighting the current limitations and the promises for the future in this field

    Hydroxyapatite for biomedical applications: A short overview

    Get PDF
    Calcium phosphates (CaPs) are biocompatible and biodegradable materials showing a great promise in bone regeneration as good alternative to the use of auto-and allografts to guide and support tissue regeneration in critically-sized bone defects. This can be certainly attributed to their similarity to the mineral phase of natural bone. Among CaPs, hydroxyapatite (HA) deserves a special attention as it, actually is the main inorganic component of bone tissue. This review offers a comprehensive overview of past and current trends in the use of HA as grafting material, with a focus on manufacturing strategies and their effect on the mechanical properties of the final products. Recent advances in materials processing allowed the production of HA-based grafts in different forms, thus meeting the requirements for a range of clinical applications and achieving enthusiastic results both in vitro and in vivo. Furthermore, the growing interest in the optimization of three-dimensional (3D) porous grafts, mimicking the trabecular architecture of human bone, has opened up new challenges in the development of bone-like scaffolds showing suitable mechanical performances for potential use in load bearing anatomical sites

    Efficiently Improving the Wi-Fi-Based Human Activity Recognition, Using Auditory Features, Autoencoders, and Fine-Tuning

    Get PDF
    Human activity recognition (HAR) based on Wi-Fi signals has attracted significant attention due to its convenience and the availability of infrastructures and sensors. Channel State Information (CSI) measures how Wi-Fi signals propagate through the environment. However, many scenarios and applications have insufficient training data due to constraints such as cost, time, or resources. This poses a challenge for achieving high accuracy levels with machine learning techniques. In this study, multiple deep learning models for HAR were employed to achieve acceptable accuracy levels with much less training data than other methods. A pre-trained encoder trained from a Multi-Input Multi-Output Autoencoder (MIMO AE) on Mel Frequency Cepstral Coefficients (MFCC) from a small subset of data samples was used for feature extraction. Then, fine-tuning was applied by adding the encoder as a fixed layer in the classifier, which was trained on a small fraction of the remaining data. The evaluation results (K-fold cross-validation and K=5) showed that using only 30% of the training and validation data (equivalent to 24% of the total data), the accuracy was improved by 17.7% compared to the case where the encoder was not used (with an accuracy of 79.3% for the designed classifier, and an accuracy of 90.3% for the classifier with the fixed encoder). While by considering more calculational cost, achieving higher accuracy using the pre-trained encoder as a trainable layer is possible (up to 2.4% improvement), this small gap demonstrated the effectiveness and efficiency of the proposed method for HAR using Wi-Fi signals

    Oil-in-water microemulsion encapsulation of antagonist drugs prevents renal ischemia-reperfusion injury in rats

    Get PDF
    Developing new therapeutic drugs to prevent ischemia/reperfusion (I/R)-induced renal injuries is highly pursued. Liposomal encapsulation of spironolactone (SP) as a mineralocorticoid antagonist increases dissolution rate, bioavailability and prevents the drug from degradation. In this context, this work develops a new formulation of oil-in-water type microemulsions to enhance the bioavailability of SP. The size of the SP-loaded microemulsion was about 6.0 nm by dynamic light scattering analysis. Briefly, we investigated the effects of nano-encapsulated SP (NESP) on renal oxidative stress, biochemical markers and histopathological changes in a rat model of renal I/R injury. Forty eight male Wistar rats were divided into six groups. Two groups served as control and injury model (I/R). Two groups received “conventional” SP administration (20 mg/kg) and NESP (20 mg/kg), respectively, for two days. The remaining two groups received SP (20 mg/kg) and NESP (20 mg/kg) two days before induction of I/R. At the end of the experiments, serum and kidneys of rats underwent biochemical, molecular and histological examinations. Our results showed that I/R induces renal oxidative stress, abnormal histological features and altered levels of renal biomarkers. Administration of SP in healthy animals did not cause any significant changes in the measured biochemical and histological parameters compared to the control group. However, SP administration in the I/R group caused some corrections in renal injury, although it could not completely restore I/R-induced renal oxidative stress and kidney damage. On the contrary, NESP administration restored kidney oxidative injury via decreasing renal lipid peroxidation and enhancing glutathione, superoxide dismutase and catalase in kidneys of the I/R group. The deviated serum levels of urea, creatinine, total proteins and uric acid were also normalized by NESP administration. Furthermore, NESP protected against renal abnormal histology features induced by I/R. Therefore, NESP has beneficial effects in preventing kidney damage and renal oxidative stress in a rat model of I/R, which deserves further evaluations in the future

    MOF-mediated synthesis of CuO/CeO2 composite nanoparticles: Characterization and estimation of the cellular toxicity against breast cancer cell line (MCF-7)

    Get PDF
    A copper oxide/cerium oxide nanocomposite (CuO/CeO2, NC) was synthesized via a novel method using a metal–organic framework as a precursor. This nanomaterial was characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering size analysis (DLS), and zeta potential. The PXRD showed the successful synthesis of the CuO/CeO2 NC, in which the 2theta values of 35.55◦ (d = 2.52 Å, 100%) and 38.73◦ (d = 2.32 Å, 96%) revealed the existence of copper (II) oxide. FTIR analysis showed the CeO2, hydroxyl groups, absorbed water, and some residual peaks. The solid phase analysis by FESEM and TEM images showed mean particle sizes of 49.18 ± 24.50 nm and 30.58 ± 26.40 nm, respectively, which were comparable with crystallite size (38.4 nm) obtained from PXRD, but it appears the CuO/CeO2 NC was not evenly distributed and in some areas, showed it was highly agglomerated. The hydrodynamic size (750.5 nm) also showed the agglomeration of the CuO/CeO2 NCs in the solution, which had a negatively charged surface. The CuO/CeO2 NCs showed anti-proliferative activity against human breast cancer cell line (MCF-7) in a dose-and time-dependence way, while affecting normal cells less significantly

    Assessment of SnFe2O4 nanoparticles for potential application in theranostics: Synthesis, characterization, in vitro, and in vivo toxicity

    Get PDF
    In this research, tin ferrite (SnFe2O4 ) NPs were synthesized via hydrothermal route using ferric chloride and tin chloride as precursors and were then characterized in terms of morphology and structure using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV-Vis), X-ray power diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) method. The obtained UV-Vis spectra was used to measure band gap energy of as-prepared SnFe2O4 NPs. XRD confirmed the spinel structure of NPs, while SEM and TEM analyses disclosed the size of NPs in the range of 15–50 nm and revealed the spherical shape of NPs. Moreover, energy dispersive X-ray spectroscopy (EDS) and BET analysis was carried out to estimate elemental composition and specific surface area, respectively. In vitro cytotoxicity of the synthesized NPs were studied on normal (HUVEC, HEK293) and cancerous (A549) human cell lines. HUVEC cells were resistant to SnFe2O4 NPs; while a significant decrease in the viability of HEK293 cells was observed when treated with higher concentrations of SnFe2O4 NPs. Furthermore, SnFe2O4 NPs induced dramatic cytotoxicity against A549 cells. For in vivo study, rats received SnFe2O4 NPs at dosages of 0, 0.1, 1, and 10 mg/kg. The 10 mg/kg dose increased serum blood urea nitrogen and creatinine compared to the controls (P < 0.05). The pathology showed necrosis in the liver, heart, and lungs, and the greatest damages were related to the kidneys. Overall, the in vivo and in vitro experiments showed that SnFe2O4 NPs at high doses had toxic effects on lung, liver and kidney cells without inducing toxicity to HUVECs. Further studies are warranted to fully elucidate the side effects of SnFe2O4 NPs for their application in theranostics
    • …
    corecore