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Human activity recognition (HAR) based on Wi-Fi signals has attracted significant attention due to its conve-
nience and the availability of infrastructures and sensors. Channel State Information (CSI) measures how Wi-Fi
signals propagate through the environment. However, many scenarios and applications have insufficient training
data due to constraints such as cost, time, or resources. This poses a challenge for achieving high accuracy levels
with machine learning techniques. In this study, multiple deep learning models for HAR were employed to
achieve acceptable accuracy levels with much less training data than other methods. A pretrained encoder
trained from a Multi-Input Multi-Output Autoencoder (MIMO AE) on Mel Frequency Cepstral Coefficients
(MFCC) from a small subset of data samples was used for feature extraction. Then, fine-tuning was applied by
adding the encoder as a fixed layer in the classifier, which was trained on a small fraction of the remaining data.
The evaluation results (K-fold cross-validation and K = 5) showed that using only 30% of the training and
validation data (equivalent to 24% of the total data), the accuracy was improved by 17.7% compared to the case
where the encoder was not used (with an accuracy of 79.3% for the designed classifier, and an accuracy of 90.3%
for the classifier with the fixed encoder). While by considering more calculational cost, achieving higher accu-
racy using the pretrained encoder as a trainable layer is possible (up to 2.4% improvement), this small gap

demonstrated the effectiveness and efficiency of the proposed method for HAR using Wi-Fi signals.

1. Introduction

Human Activity Recognition (HAR) assumes a prominent role within
the realm of research, propelling progress in Smart Homes and the
Internet of Healthcare Things (IoHT). Its applications reverberate
significantly within the healthcare sphere, encompassing functions such
as Age and Gender Estimation, Monitoring of the Elderly and Individuals
with Disabilities, and addressing ailments such as Alzheimer’s, which
necessitate ongoing care [1], as well as the identification of heart dis-
eases [2]. HAR techniques are inherently classified into vision-based,
sensor-based, and Wi-Fi-based paradigms. Vision-based techniques,
despite their commendable accuracy, encounter constraints arising from
environmental dependencies, encompassing factors like lighting condi-
tions and background settings. A corollary concern pertains to the pri-
vacy encroachments linked to Vision-Based techniques [3].
Furthermore, while sensor-based HAR, exemplified by the utilization of
deep recurrent neural networks and electroencephalogram EEG signals
[4], showcases promising outcomes, it is reliant on sophisticated
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hardware for data recording. Conversely, sensor-based HAR involving
more accessible devices such as smartphones emerges as a practical
solution in real-world contexts, especially for data collection [5]. These
endeavors have led to the conception of applications and frameworks
where models are trained employing data derived from smartphones
and even smartwatches [6]. However, the implementation of wearable
sensors introduces a sense of discomfort and interruption during activity
engagement, along with associated privacy trade-offs [7]. Within the
domain of Wi-Fi signal attributes, Channel State Information (CSI) and
Received Signal Strength Indicator (RSSI) stand as pivotal markers.
Owing to its user-friendly nature and reasonable precision, RSSI has
found extensive application in HAR [8]. Nevertheless, CSI outperforms
RSSI in terms of performance [9-11], thus meriting its selection as the
preferred attribute in this study. CSI notably exhibits enhanced resil-
ience in the face of obstacles and fluctuations in the distances between
transmitters and receivers [12].

The domains of deep learning and machine learning have exerted a
profound influence within the context of HAR, primarily focusing on the
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classification and prediction of activities. Notably, Convolutional Neural
Networks (CNNs) have emerged as a pivotal catalyst in this arena [15]. A
significant study [16] delves into the realm of deep learning method-
ologies, encompassing CNN, Gated Recurrent Units (GRU), Long
Short-Term Memory (LSTM), and attention techniques, all of which hold
relevance for CSI-based HAR. These strategies aptly handle the in-
tricacies of high-dimensional and time-series data. Pertaining to the
efficacy of attention-based methodologies, recent investigations [17,18]
underline the potential of the Convolution Block Attention Module
(CBAM) in augmenting HAR models, encompassing both visual and
time-series data. Furthermore, within [19], the proposition of a
multi-resolution fusion convolution network (MRFC-Net) emerges as a
means to enhance activity recognition accuracy. This study takes into
consideration the challenge of HAR models encountering real-world
data from previously unknown classes. To address this concern, the
exploration of variational autoencoders, as potent tools for data
augmentation, comes to the forefront.

Focusing on the surveillance of distinct groups, such as prisoners and
the elderly, this study introduces a multiresolution fusion model rooted
in convolutional neural networks. This innovative model facilitates the
recognition of samples from unknown classes without imposing the
constraint of prior -classification. Meanwhile, in Ref. [20], a
resource-efficient approach involving residual convolutional networks
and a recurrent neural network (RCNN-BiGRU) surfaces, accompanied
by an optimal feature set selection mechanism grounded in the Marine
Predator Algorithm (MPA). This methodology showcases commendable
performance, albeit with a relatively higher computational cost.
Notably, the domain of data preprocessing stands as a cornerstone in the
efficacy of classifiers. As a result, diverse preprocessing techniques have
been meticulously scrutinized [21]. For instance, within [22], the con-
ventional Mel Frequency Cepstral Coefficient (MFCC), commonly asso-
ciated with audio signals, has been judiciously adapted to preprocess CSI
time-series data. This adaptation, combined with the employment of
Principal Component Analysis (PCA) and the transformation of data into
one-dimensional time series, positions MFCC as a potent catalyst for
feature extraction, resulting in exceptional classification capabilities.
The preprocessing repertoire extends to encompass techniques such as
Discrete Wavelet Transform (DWT) and Short-Time Fourier Transform
(STFT). Subsequently, three distinct classifiers - CNN, LSTM, and Hidden
Markov Model (HMM) - are harnessed for feature classification. The
fusion of MFCC and CNN emerges as particularly promising [22].
Noteworthy is the approach adopted within [22], treating CSI streams
akin to sound time series and leveraging MFCC for the extraction of
auditory features. This not only streamlines training procedures but also
optimizes computational resources. The choice of MFCC finds its ratio-
nale in the shared spectral attributes between the CSI time series and the
human auditory spectrum. It is worth noting that while the utilization of
MFCC underscores promising outcomes in HAR, alternative techniques
such as wavelet-based feature extraction and preprocessing have also
demonstrated excellent results in analogous tasks [23,24].

In various research endeavors, the incorporation of autoencoders has
been explored to amplify the performance of classifiers. Autoencoders
exhibit a range of variations, each tailored to specific objectives like
denoising, feature extraction, generating synthetic data, and reducing
dimensionality. The core principle underlying the deployment of
autoencoders is to replicate input data at the output while preserving
maximal resemblance. Comprising both an encoder and a decoder, once
the encoder is trained, its integration into the classifier seamlessly en-
hances outcomes. Notably, in specific research studies, autoencoders are
utilized to eliminate noise and enhance results [24].

Zou et al. [25] introduce a CSI-based technique named Autoencoder
Long Term Recurrent Convolutional Network (AE-LRCN), which entails
a convolutional neural network for feature extraction, a long short-term
memory module to capture underlying temporal dependencies, and an
autoencoder for noise removal. This approach yields high performance
without necessitating specialized expertise and is characterized by
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efficient processing [25]. Guo et al. [26] propose an LSTM-based
encoder and a CNN-based decoder to address the challenge of
declining accuracy when the classifier is applied to different users. The
method presented in Ref. [26] showcases robust classification perfor-
mance, outperforming KNN, SVM, and RNN. A comprehensive study
[27] encompasses an array of deep learning methodologies, encom-
passing autoencoders, RNN, LSTM, GRU, Multilayer Perceptron (MLP),
and Random Forest (RF). Notably, autoencoders excel in the task of
feature extraction. Amidst the backdrop of high-performing HAR tech-
niques, the acquisition of ample data emerges as a challenge, often
hindered by constraints or limited availability [28]. This constraint
emanates from the labor-intensive process of data labeling, financial
investments, and privacy considerations [29]. As a result, the pursuit of
models capable of achieving commendable accuracy with fewer data
instances becomes a pivotal endeavor. To address this challenge, diverse
strategies have been proposed, including the utilization of Generative
Adversarial Networks (GANs) and data augmentation to synthesize data
instances. Nevertheless, these approaches encounter challenges in sce-
narios where data availability is limited, particularly in generating in-
stances that accurately mimic real data [30]. Furthermore, certain
studies advocate for the efficacy of more advanced autoencoder vari-
ants, such as variational autoencoders and adversarial autoencoders.
These models exhibit proficiency in managing heterogeneous data from
various devices, including diverse wearable sensors [31], and addressing
data diversity stemming from different individuals [32].

Addressing the quandary of accessing adequate data, a recent study
[33] introduced an innovative technique involving two autoencoders
and two datasets. The first autoencoder underwent training on a sub-
stantial dataset, with its encoder subsequently applied to the second
autoencoder. This facilitated the training of the second encoder using a
smaller dataset. Furthermore, the output of the second autoencoder was
labeled and employed to further train the model. Another study [13]
tackled data scarcity by presenting a novel, based on Multi-Input Mul-
ti-Output Autoencoder (MIMO AE). Employing this autoencoder, three
distinct methodologies were adopted to achieve optimal performance.
The MIMO AE’s encoder component extracted features based on their
similarity, proving instrumental in the classifier’s enhanced perfor-
mance with fresh data. Alternatively, for computational efficiency and
satisfactory outcomes, the encoder was integrated into the classifier
without necessitating retraining. Additionally [13], investigated diverse
proportions of training data to ascertain their influence. These en-
deavors collectively contribute to the resolution of data constraints in
HAR, shedding light on techniques facilitating accurate activity recog-
nition under restricted data scenarios. Furthermore, the combination of
MIMO AE and MFCC for feature extraction in Automatic Speech
Recognition (ASR) has been studied previously [34], further affirming
the efficacy of this approach in optimizing feature extraction efficiency
for speech recognition tasks.

In [35], a novel Spectro-Temporal network (STnet) was introduced
to extract temporal patterns and micro-Doppler features from radar
signals. Comprising a spectro-stream and a temporal stream, STnet’s
efficacy rests upon STFT for classification, yielding commendable effi-
ciency. It holds the potential to address sensor-based activity recogni-
tion, including Wi-Fi channel state information. It is pertinent to
acknowledge, however, that STnet bears limitations with respect to
location dependence or variations in distances between the radar and
the activity performer. This drawback might impact result accuracy in
settings with diverse distances or locations. Nevertheless, STnet stands
as a significant contribution, enriching the arena of temporal pattern
and micro-Doppler feature extraction. The study at hand concentrates
on achieving robust performance with limited data through the fusion of
MFCC and Multi-Input Multi-Output Autoencoder for feature extraction.
Building upon the foundations established in Ref. [13], the central goal
is to augment the performance of the model by employing the encoder
within the classifier sans retraining. This endeavor aims to approximate
outcomes closely aligned with those derived from the model boasting a
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retrained encoder in the classifier. The impetus behind enhancing the
untrained encoder model lies in its superior efficiency, particularly
concerning computational overhead, vis-a-vis other techniques pro-
posed in Ref. [13].

In the preprocessing phase, the adoption of MFCC for time-series
data significantly enhances classification accuracy. The extraction of
features from CSI time series using MFCC culminates in deep learning
methods showcasing heightened accuracy in activity classification.
Consequently, the amalgamation of these two methodologies holds the
promise of optimal performance and efficiency. Following preprocess-
ing, the extracted features undergo classification through four ap-
proaches in this study. These approaches encompass the unaltered
classifier, a classifier featuring a pretrained and untrainable encoder, a
classifier integrating a pretrained and retrained encoder, and a classifier
leveraging the encoder devoid of prior training.

2. The proposed method

This section elucidates the dataset, the preprocessing methodology,
and the technique employed for feature extraction and classification.
The initial elucidation pertains to the preprocessing technique, followed
by the subsequent explication of four distinct approaches applied for
model training utilizing the preprocessed data.

A. Selected Dataset

The study’s efficacy is demonstrated through the utilization of the
dataset sourced from Ref. [14]. This dataset comprises Wi-Fi-based CSI
obtained via the Nexmon tool on a Raspberry Pi 4 GB. Specifically, data
collection was executed using a Raspberry Pi and a Tp-link Archer C20
as an Access Point (AP) operating at a 20 MHz bandwidth. The data
collection setup involved a Personal Computer (PC) generating traffic,
achieved through activities such as pinging or streaming videos.

To ensure data quality, the collected CSI data underwent a noise
reduction filtering process. The data acquisition settings encompassed
Core 1, NSS mask 1, a sampling size of 4000, and a duration of 20 s. The
dataset encapsulates seven distinct activities, each performed 20 times
by three volunteers within a residential environment. Consequently, a
total of 420 samples were generated. The dataset, along with corre-
sponding labeled files, is accessible through the GitHub repository (https
://github.com/parisafm/CSI-HAR-Dataset, Accessed on August 10,
2023).

The activities were executed while positioned between the trans-
mitter and receiver, thereby inducing phenomena such as reflections,
multipath fading, and scattering [36]. These actions led to variations in
the CSI and the multipath transmission of Wi-Fi signals. The CSI data,
offering insights into both signal amplitude and phase, facilitated the
identification of these alterations [37]. Among published studies in the
field of human activity recognition, there are some outstanding and
recent publications that used this dataset as their main or secondary
source of data [38-40]. These studies focused on using attention-based
networks, advanced filtering or advanced feature fusion as their main
approach, in order to improve the results of HAR models. Therefore,
alongside some familiar studies, final results of these publication will be
used a comparison reference in this manuscript, assuring to present a fair
comparison, concerning this research.

B Channel State Information

Orthogonal Frequency-Division Multiplexing (OFDM) technologies
find application in telecommunication networks for coherent informa-
tion transmission using Wi-Fi signals over channels connecting trans-
mitters and receivers. In the context of OFDM modulation, messages are
encoded onto orthogonal subcarriers and transmitted. This enables the
concurrent transmission of multiple signals with overlapping spectral
ranges through a singular channel. In essence, instead of utilizing a
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solitary wideband channel frequency, OFDM modulation divides a sin-
gle information stream among numerous closely spaced narrow-band
subchannel frequencies.

In scenarios where obstacles are present, phenomena like reflection,
scattering, and multipath fading come into play [36]. Consequently,
when an individual conducts an activity between the transmitter and
receiver, modifications occur in the propagation of the Wi-Fi network’s
multipath. CSI offers insights into both signal amplitude and phase,
enabling the detection of changes in Wi-Fi signals. These changes
encompass signal scattering, environmental attenuation, multipath
fading, shadow fading, and power attenuation due to propagation dis-
tance in each transmission path [37]. CSI boasts numerous advantages
over RSSI in this context, including heightened resilience, diminished
susceptibility to environmental influences, and augmented information
transmission [41].

Moreover, OFDM technology can be harnessed in Wi-Fi devices,
wherein the IEEE 802.11 n/ac standard facilitates the division of
bandwidth among orthogonal subcarriers. Concurrently, the utilization
of Multiple Input Multiple Output (MIMO) antennas for both trans-
mitters and receivers in Wi-Fi devices can amplify multiplexing benefits
and reduce channel interference. The CSI data can be represented as a
channel matrix:

H1,1 e Hl,r
CSI=( : =~ (@)
Hl.l HIJ

where t is the number of transmitters, r is the number of receivers, and
H, , represents a vector that includes complex pairs of subcarriers. H can
also be demonstrated as:

H,= [ht.r.l PR ht.r.k] (2)
where k represents the number of data subcarriers, and h is a complex
number that incorporates the phase and amplitude of CSI. Therefore,
each subcarrier can be expressed as:

hi) :A;'.re/k?j‘,., ic [L 7k] 3

In the complex number h, A is the CSI amplitude, 6 is the CSI phase, and i
is the number of subcarriers in each channel. The number of available
subcarriers can also vary according to the type of selected hardware or
channel bandwidth. In 20MHZ bandwidth, Raspberry pi4 (Nexmon CSI
Tool) can access 56 subcarriers.

Alterations in both phase and amplitude manifest as a consequence
of activity engagement or environmental adjustments. Nonetheless,
unsynchronized transmitters and receivers introduce haphazard phase
offsets within the CSI, resulting in erratic transformations (Fig. (1)).
Furthermore, the sampling frequency offset exerts an impact on the
phase, whereas CSI generally maintains a relatively consistent range
[42]. Consequently, CSI amplitude typically finds application as a more
dependable metric.

In the context of human activity recognition, CSI plays a significant
role. With the advancement of wireless technologies and sensing
methodologies, wireless signals can sense human behaviors. The CSI
data contains information about environmental changes, including the
movement of humans in a specific environment. Therefore, it can be
used to recognize human activities. Meanwhile, antenna selection can be
done based on their sensitivity in accordance with different activities.

C MFCC and Representation of Data

The MFCC algorithm was employed for feature extraction in this
study (refer to Fig. (2)). The shared attributes between CSI data and
speech data rendered MFCC a fitting choice for feature extraction, as
elucidated in Ref. [22]. Distinct shifts in overall spectral composition
were evident in CSI samples across various activities, manifesting
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changes in frequency content during actions. Notably, all activities’
occupied bandwidths fell within the auditory spectrum of human
hearing, approximately 20-20 kHz [22]. CSI time series and sound
signals exhibited a considerable overlap in a substantial portion of the
human audible hearing spectrum, especially in the lower frequency
range up to 1000 Hz, aligning seamlessly with the emphasis of MFCC
[22]. Additionally, since sound and Wi-Fi signals adhered to comparable
wave equations as electromagnetic waves within the measurement
environment, they underwent analogous reflections, refractions, and
diffractions from barriers and walls.

To process the original lengthy CSI data per record, a segmentation
strategy was employed employing a sliding window with a span of 300
and a step of 30. This maneuver augmented the data accessible for
subsequent procedures, resulting in 4545 samples for all classes. Each
sample bore a structure of [300, 52], cumulating into a comprehensive
data array of [4545, 300, 52]. Employing the MFCC algorithm, which
demanded time-series data, was instrumental in representing each
sample. Literature such as [22] advocated dimensionality reduction
methods like PCA for employing the MFCC algorithm on the initial data.
By applying PCA, the original data could be transformed into 4545
sample vectors, each possessing a length of 300. Alternatively, it was
viable to utilize the MFCC algorithm on each of the 52 dimensions (thus
calculating MFCCs for each of the vectors with the length of 300),
culminating in a larger represented data array of [4545, 59, 13, 52].
Here, every sample had a form of [59, 13, 52]. Employing parameters
selected through trial and error, a sample rate of 500 Hz (notably lower
than the previously mentioned 1000 Hz), 13 cepstrum, a 512-size Fast
Fourier Transform (FFT), and 26 filters in the filterbank were configured
for the MFCC algorithm.

D Autoencoder

An autoencoder represents a variant of artificial neural networks
designed to autonomously learn the compression and subsequent
reconstruction of data. This construct comprises an input layer, an
output layer, and one or more concealed layers. The process of con-
verting input data into a condensed representation of lower dimensions

is termed encoding, while the converse process of restoring the original
data from this encoded form is referred to as decoding. Positioned within
the latent space, this encoded representation harbors distilled features
that encapsulate the most pivotal information inherent in the input data.
In this study, an autoencoder is harnessed to extract analogous fea-
tures from instances belonging to identical classes. This endeavor aims
to enhance classifier performance by leveraging these acquired features.
Notably, the encoder within the autoencoder is educated and preserved
for subsequent utilization within the classifier. The decoder, entrusted
with the task of restoring the input data, remains unutilized within the
classifier’s context in this investigation. The function that is used to
make a nonlinear mapping of the x input at the encoder is as follows:

di =0(wx; +b) (4)

where ¢ is a nonlinear activation function, d; is encoded features, and w
and b are weight and bias, respectively. The decoder function used to
reconstruct the input data is as follows:

d;=o(Wd; + b) 5)

where d; is the output of the decoder, which is designed to be exactly

similar to the original input, while w and b are, respectively, the weight
and bias of the decoder.

E. Multi-Input Multi-Output Autoencoder

This investigation introduces a pioneering amalgamation of the
MFCC algorithm and MIMO AE for the extraction of features. The MIMO
AE, characterized by two inputs and two outputs, extracts shared in-
formation from its initial inputs and retains them within the output of
the encoder subnetwork. Subsequently, the decoder subnetwork re-
constructs the inputs using these derived features. During the classifi-
cation phase, the classifier network discerns the type of activity,
disregarding extraneous attributes like personal identity, gender, or age.
The impact of these non-essential attributes on the input can be miti-
gated through the utilization of the MIMO AE encoder, potentially
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bolstering the efficacy of the trained classifier (Refer to Fig. (3)). The
MIMO AE training necessitates pairs of samples that share the same
activity type but differ in non-targeted attributes. Any dissimilarity
related to non-targeted aspects suffices, even if the activity is replicated.

The characteristics and behaviors of the MIMO AE are clarified
through the utilization of RGB color images, as demonstrated in Fig. (4).
One image portrays a purple shade, while the other exhibits a green hue.
Both of these images are utilized as inputs for the two-input two-output
AE architecture. Within this configuration, the encoder component
distills the color blue as a salient feature. Blue serves as a representation
of the commonalities between the two images. Deviations in color,
symbolized by the hues red and green, are retained as weights and biases
within the decoder during the feature extraction process. Ultimately,
these divergences merge with the shared color (blue), culminating in the
reconstruction of the input images at the output. It is important to
emphasize that achieving an exact replication of the original inputs re-
mains an elusive endeavor. In the context of training the MIMO AE with
CSI data, studies such as [43] attest to the enhanced performance ach-
ieved in comparison to prior methodologies for various tasks.

The MIMO AE is architected as depicted in Fig. (5), with inputs and
outputs conforming to the contours of the extracted MFCCs. The delib-
erate similarity in feature shape to the original inputs facilitates equi-
table comparisons in future studies. A mere 1.5% of all samples are
selected for MIMO AE training, ensuring minimal overlap between the
data utilized for MIMO AE training and that earmarked for classifier
training, validation, and evaluation. Escalating the number of pairs fails
to considerably diminish the validation loss of the MIMO AE. Given that
faithful input reconstruction is not a foremost objective, this charac-
teristic does not encumber subsequent investigations. All layers employ
the ReLU function as their activation function, except for the last layer
which remains devoid of activation. The training process adheres to a
batch size of 64, spans 300 epochs, features a learning rate of 0.0001,
incorporates a kernel size of 5, and employs Mean Square Error (MSE) as
the loss function, orchestrated by the Adam learning algorithm. Notably,
minor alterations in the hyperparameters of the devised MIMO AE, such
as learning rate and dropout, do not elicit substantial alterations in the
results.

F. Fine-Tuning

Transfer Learning (TL) is a machine learning strategy that heightens
the efficacy of a successive model by incorporating a preexisting model
(with predetermined weights and biases) as a foundational framework
for the subsequent analogous model. This technique has garnered
notable currency in the realm of HAR challenges in contemporary times.

Not interested in its details
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Hernandez et al. [43] furnish an exhaustive examination of the manifold
applications of TL within HAR research. Another avenue within the
transfer learning paradigm is fine-tuning. Additionally, Ray et al. [44]
have explored the deployment of TL in HAR, particularly in the context
of visual data. Further, Pavliuk et al. [45] conducted an investigation
into the synergy between TL and wavelet transform for feature extrac-
tion, introducing a novel amalgamation of methodologies that yields
discernible outcomes.

In the framework of transfer learning, an established model is inte-
grated into a distinct yet conceptually linked model. The discerning
choice of the constituent from the primary model for integration into the
secondary model carries substantive import, with the aim of augmenting
the ultimate outcomes of the latter through harnessing the outputs of the
former. To elucidate, as depicted in Fig. (6), subsequent to the training
of the inaugural network on dataset 1, model 1 is primed for assimilation
into an alternate network. Following this, network 2, encompassing the
trained model 1, undergoes training with dataset 2. Importantly, model
1 within network 2 can be subjected to subsequent rounds of training. In
the proposed methodology, only the encoder component of the
autoencoder is harnessed within the classifier.

Delineating the fine-tuning method and TL reveals a disparity in the
selection of training datasets for the initial and subsequent models. TL
entails the utilization of an entirely distinct dataset for training the
initial and second models. Conversely, in fine-tuning, a modest portion
of the dataset is allocated for training the initial model, and the residual
dataset is allocated for training the second model. In both paradigms,
following the training of the initial model and the determination of its
weights and biases, the ensuing alterations in the second model are
subtler compared to the scenario where the second model is trained from
the ground up. In this study, fine-tuning is adopted due to the limited
dataset allocation for training the autoencoder model. A fraction of the
remaining data is arbitrarily chosen for the training of the classifier.
Notably, the data deployed for autoencoder training remains detached
from the training process of the classifier.

G. Designed Classifier

The classifier’s architecture is presented in Fig. (7). The initial stra-
tum of this configuration corresponds to the encoder subnetwork of the
MIMO AE, which can be optionally omitted in the fundamental rendition
of this classifier. In three distinct approaches, this encoder can function
as a pretrained and untrainable layer, a pretrained and trainable layer,
or an untrained layer. This gives rise to a total of four potential ap-
proaches, encompassing the option of not integrating any form of
encoder. The comprehensive array of conceivable scenarios is visually
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depicted in Fig. (8). Additionally, a range of distinct hyperparameters is
systematically examined to meticulously fine-tune the classifier, thereby
ensuring its resilience and efficacy.

Concerning the hyperparameters governing the devised classifier,
the Relu function is engaged as the activation function across all strata,
with the exception of the output layer, where Softmax serves as the
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Fig. (6). General concept of transfer learning/fine-tuning, based on using pretrained models in the training process of a secondary model.

designated activation function. Furthermore, all convolutional strata
adopt a kernel size of 7. In relation to the remaining hyperparameters, a
batch size of 16, 150 epochs, Categorical Cross Entropy (selected for its
applicability in multi-class classification tasks) as the designated loss
function, and the Adam algorithm for the learning process, alongside an
initial learning rate of 0.0001, are determined through iterative refine-
ment. The adaptive nature of the learning rate is managed by the Adam
algorithm throughout the training procedure.

3. Results of simulations

This section proceeds to showcase the outcomes achieved through
the utilization of the proposed MIMO AE in three distinct methodolo-
gies. Initially, 20% of the available dataset is reserved exclusively for the
assessment phase, thereby ensuring a rigorous and comprehensive
evaluation of the model’s performance. Subsequently, leveraging the
remaining dataset, experiments are meticulously conducted across a

range of proportions, spanning from 10% to 50% (equivalent to 8%-—
48% of the total available dataset) for both the training and validation
phases. Within these two phases, 80% of the available data is devoted to
training endeavors, while the remaining 20% is exclusively allocated for
validation purposes. It is pertinent to emphasize that a minor fraction of
the original dataset is specifically allocated and employed to train the
MIMO AE prior to initiating this process. This methodology effectively
empowers the pretrained encoder to aptly distill and capture pivotal
features inherent within the data. Through the systematic assessment of
the classifier’s performance across varying data fractions, the over-
arching objective is to showcase its adeptness in attaining notable levels
of accuracy despite the constraints imposed by limited training data.

A. Numerical Results of K-Fold Cross-Validation

This section offers a comprehensive exposition of the simulation
outcomes pertaining to four distinct models: the designed classifier, the
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Fig. (7). The designed classifier, including the three possible approaches of utilizing the encoder from the MIMO AE.

Inputs » Untrained Encoder » Designed Classifier »  Outputs (a)
Inputs > Pretz;irr;eisal;il;oder » Designed Classifier »  Outputs (b)
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Fig. (8). All possible scenarios a) Designed Classifier and Untrainable Encoder b) Designed Classifier and Trainable Encoder c¢) Designed Classifier and Untrainable
Encoder and d) Designed Classifier, regarding the utilizing the encoder from MIMO AE in the designed classifier.
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designed classifier with the pretrained and untrainable encoder, the
designed classifier with the pretrained and trainable encoder, and the
designed classifier with the untrained encoder. The primary objective
underlying these model comparisons is twofold. Firstly, with respect to
the designed classifier paired with the pretrained and untrainable
encoder, the intention is to underscore the merits of employing this
particular encoder variant by juxtaposing its performance against that of
the designed classifier. Secondly, in the case of the designed classifier
accompanied by the pretrained and trainable encoder, this comparative
analysis serves to ascertain that any potential enhancement is not solely
attributed to the use of a larger network. This is validated by comparing
it with an extended iteration of the designed classifier, namely the
version incorporating the untrained encoder. Through these systematic
comparisons, substantive insights can be derived concerning the influ-
ence of diverse encoder configurations on the classifier’s performance.

In the context of the data segmentation process presented, the uti-
lization of K-fold cross-validation with K = 5 is employed to ensure the
consistency and reliability of the results. Given the diverse data seg-
ments involved in this study’s training process, a judicious application of
the cross-validation methodology is paramount. To this end, the evalu-
ation data is initially segregated from the training and validation data
via K-fold cross-validation. Subsequently, segments of varying magni-
tudes are harnessed for subsequent training and validation phases. This
approach facilitates a comprehensive and stringent appraisal of the
model’s performance while accommodating the varied dataset seg-
mentations. The holistic concept is visually illustrated in Fig. (9). The
conclusive evaluation outcomes, encompassing the utilization of up to
50% of the training and validation data, are meticulously presented in
Table (1). It is imperative to note that when deploying more extensive
datasets for training and validation (using 60% of available data or
more), all four models attain near-impeccable results, with accuracy
surpassing the 97% threshold. However, it is noteworthy that this study

— 1 I
Minority of o T [—);
Data (1.5% T ans :

( ) L{  Samples l_):
Majority of :' E
Data (98.5%) l '
ol 50% of -
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Y | E E
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Table (1)
The recognition results, regarding all four possible approaches and different data
sizes (the training and validation data).

The Classifier 10% of 20% of 30% of 40% of 50% of
the Data the Data the Data the Data the Data
Designed Classifier 69.2% 76.7% 79.3% 85.5% 93%
Designed Classifier 80.1% 86,1% 90.3% 93.7% 96.2%
with Untrainable
Encoder
Designed Classifier 64% 68.3% 79.8% 80.8% 82.9%
with Untrained
Encoder
Designed Classifier 71.1% 82.4% 93.7% 96.3% 99.1%

with Trainable
Encoder

is explicitly tailored to address scenarios characterized by limited
training data volume. As such, these high-performance instances are
intentionally omitted from this discourse. Instead, the paper accentuates
the efficacy and enhancements engendered by the proposed approach in
contexts characterized by constrained data resources.

B. Confusion Matrices of Best Results, Regarding Each Model

The accuracy acquired via the K-fold cross-validation method stands
as a reliable benchmark for upcoming research endeavors. Given the
intricate nature of this challenge as a seven-class classification, it holds
paramount significance to ensure that recognition rates for each distinct
class maintain parity or close alignment with the overarching attained
accuracy. To effectively address this concern, we present the confusion
matrices linked to one specific fold within the set of five folds, as facil-
itated by the K-fold cross-validation technique. These matrices are
visually elucidated in Fig. (10), specifically considering the utilization of

Training MIMO AE
Encoder Decoder E
Fine-Tuning
(Transfer Learning)

""""" A 28
Encoder E
(Untrainable or Trainable Layers of the | !
Trainable or Classifier i

Untrained)

Training and Testing the Classifier

Fig. (9). The process of slicing data for different aspects of the proposed study.
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Fig. (10). Confusion matrix, regarding the a) Designed Classifier b) Designed Classifier and Untrainable Encoder c) Designed Classifier and Untrained Encoder, and
d) Designed Classifier and Trainable Encoder, using 50% of available data for the training and validation phases.

50% of the available dataset. The elected fold epitomizes the most
comprehensive and inclusive outcomes among the spectrum of available
alternatives. Essentially, it circumvents any anomalies or isolated out-
comes that may manifest within the majority of alternative folds. A
comprehensive examination of these graphical representations unveils
the accomplishment of commendable recognition rates by each metic-
ulously designed model across the entirety of sample classes. This
observation underscores the profound effectiveness and unwavering
resilience embedded within the proposed models, thereby faithfully
delineating activities within every distinct class.

C. Comparison of the Results, Obtained from the Introduced Models
with Themselves

When examining data with limited proportions (e.g., 10% and 20%
of available data), as indicated in Table (1), the classifier designed with
an untrainable encoder showcases superior performance among the
various models. Despite the relatively meager quantity of training
samples, a noteworthy observation arises from the comparison of

10

accuracy between the classifier designed and the classifier with the
untrainable encoder. For instance, when utilizing 10% and 20% of the
available data for training and validation (resulting in respective accu-
racy values of 69.2% and 76.7% versus 80.1% and 86.1%), a meaningful
discrepancy is apparent. This differentiation is intriguing, particularly
given that these two networks share an identical count of trainable

Table (2)

The total number of trainable and untrainable parameters per model.
Type of Designed Designed Designed Designed
Parameter Classifier Classifier with Classifier with  Classifier

Untrainable Untrained with
Encoder Encoder Trainable
Encoder
Total 399,835 805,747 805,747 805,747
Parameters
Trainable 399,523 399,523 805,435 805,435
Parameters
Untrainable 312 406,224 312 312
Parameters
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parameters, as outlined in Table (2). The presence of prior knowledge
embedded in the pretrained encoder evidently influences the evaluation
outcomes of these models. Notably, even when affording more data for
the training of both models, the classifier with the untrainable encoder
consistently outperforms its more fundamental counterpart, i.e., the
standard classifier. This observation underscores the compensatory role
of efficient and effective feature extraction in mitigating the relatively
weaker training outcomes in the absence of a sizable dataset.

Considering the utilization of a pretrained encoder as a trainable
layer, as depicted in Table (1), the potential for attaining higher
recognition rates compared to the aforementioned approaches is
apparent. However, this heightened performance comes at the expense
of heightened computational demands, stemming from an increased
tally of trainable parameters. This, in turn, translates to an extended
training process duration, as revealed in Tables (2) and (3). While the
results portrayed in Table (1) depict the classifier designed with the
trainable encoder as showcasing the best general performance, a
comprehensive perspective necessitates a closer examination. When
evaluating the duration of the training process and the number of
trainable parameters, alongside a performance improvement of nearly
3% over the classifier with the untrainable encoder, the classifier with
the untrainable encoder emerges as the most valuable model presented
in this study. It is noteworthy that the discernibly enhanced performance
of the classifier with the trainable encoder, in comparison to its coun-
terpart with the untrained encoder, despite a comparable count of
trainable parameters, underscores the previously discussed assertion.
Namely, the use of a pretrained encoder in both trainable and untrain-
able capacities lead to a marked improvement, particularly when con-
fronted with limited training data availability.

D. Comparison of the Results, Obtained from the Introduced Models
with Other Studies

In order to establish an equitable benchmark for comparison against
analogous studies, two specific references, denoted as [13,14], elected
to employ an identical dataset with similar objectives. Notably [13],
conducted a repetition of simulations following the model introduced in
Ref. [14], encompassing a spectrum spanning from 10% to 50% of the
available data (equivalent to 80% of the total dataset) for both training
and validation purposes. Consequently, the findings derived from these
two investigations offer a relevant comparative foundation to the results
of the present study. The accuracies attained across the presented
models and the aforementioned antecedents are diligently compiled in
Table (4).

Upon a thorough examination of Table (4), it becomes evident that
the designed classifier coupled with the untrainable encoder has out-
performed the preceding models described in Refs. [13,14]. Notably,
this observation is particularly striking considering that one of the
models under scrutiny encompasses a pretrained and trainable encoder,
underlining the tangible influence of employing MFCC data represen-
tation throughout the entire process. Furthermore, the distinct contrast

Table (3)
The processing time (sec) of proposed methods.
Percentage of Designed Designed Designed Designed
Used Dataset Classifier Classifier and Classifier and Classifier and
for Training (Train/ Untrainable Untrained Trainable
and Validation Test) Encoder Encoder Encoder
(Train/Test) (Train/Test) (Train/Test)
10% 71.06, 0.35 110.17, 0.67 137.26, 0.93 133.46, 0.99
20% 94.68, 0.34 144.77, 0.67 190.04, 0.73 182.27, 0.77
30% 123.99, 179.74, 0.64 247.27, 0.68 235.51, 0.72
0.58
40% 146.04, 215.62, 0.74 301.23, 0.75 283.83, 0.71
0.35
50% 159.64, 234.6, 0.68 341.83, 0.72 331.42, 0.7
0.36
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Table (4)
Comparing the evaluation accuracy of proposed methods with the results of [13,
14].

Percentage of Best Best Designed Designed
Used Dataset for Results Results Classifier with Classifier with
Training and of [14] of [13] Untrainable Trainable
Validation Encoder Encoder

10% 64.76% 37% 80.1% 71.1%

20% 68.27% 68.2% 86,1% 82.4%

30% 78.26% 87.27% 90.3% 93.7%

40% 74.64% 93.21% 93.7% 96.3%

50% 76.72% 94.49% 96.2% 99.1%

in the tally of trainable parameters between the designed classifier
featuring the trainable encoder (805,435) and its predecessor (2,227,
107) [13], coupled with the fact that the former surpasses the latter,
underscores the pivotal role of a proficient and efficacious feature
extraction methodology.

While there are two studies available for results comparison using
different ratios of training data [13,14], three other studies (recently
published) are also selected for a fairer comparison. These studies
[38-40] did not try to find or evaluate the optimized size of training
data, and they used the complete dataset for all three processes of
training, validation, and evaluation. Based on the result comparison, it is
safe to say that this study manages to introduce models that are more
efficient and effective than the models introduced in these three studies.

Concerning a more detailed comparison [38], managed to achieve
99.6% accuracy using K-fold cross-validation for K = 5 (similar to this
study). While they achieved outstanding accuracy, the results presented
in this manuscript (Table (4)) demonstrate an accuracy of 99.1% using
only half the training data. Furthermore, our studies showed that the
most promising model of the research (Designed Classifier with Train-
able Encoder) is capable of achieving an accuracy of 99.8% in the same
condition (using full training data). It is worth mentioning that using
more than 50% of the training data is not an aim of this study; this extra
step has been done only to provide a more precise comparison.

Moreover, in the case of [39], the researchers managed to achieve an
accuracy of 97.6% using K-fold cross-validation for K = 5 (similar to this
study), where, similar to Ref. [38], it lacks the efficiency and effec-
tiveness of the proposed methods in this manuscript. In the case of [40],
the researcher decided to focus on the recognition of only sitting and
standing, without using K-fold cross-validation. In the recognition of
sitting and standing, authors managed to reach accuracies of 94.51%
and 96.04%, respectively, where in both cases, their models lag behind
the models proposed in this manuscript. In case of average accuracy of
99.8% (using full training data) in this manuscript, accuracies of 99.76%
and 98.38% are achieved, in case of recognizing sitting and standing,
respectively.

E Discussion

The outcomes presented in the study underscore the superior per-
formance achieved through the amalgamation of the designed classifier
with the pretrained and trainable encoder. It is of significance to note
that the designed classifier accompanied by the pretrained and
untrainable encoder exhibits notably fewer trainable parameters
(equivalent to the designed classifier) and still manages to attain a mere
3% decrease in accuracy when compared to the optimal outcome.
Consequently, this particular approach emerges as the preeminent
model among the four alternatives proposed, adeptly harmonizing
computational costs with recognition precision. In other words, if the
study’s limitations are constrained solely by the number of samples,
employing a classifier with a pretrained and trainable encoder is the
optimal approach. On the other hand, if restricted access to more robust
hardware poses an additional limitation, utilizing a classifier with a
pretrained and untrainable encoder not only incurs a significantly lower
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computational cost but also results in only a marginal decrease of nearly
3% in accuracy compared to the highest achievable recognition rate.
Howe, considering the fact that accessing robust hardware is not a
challenge to the most of recent studies, using classifier with a pretrained
and trainable encoder is a more promising approach.

Furthermore, it is pivotal to acknowledge that the discernible 16%
variance in performance between the designed classifier, incorporating
the pretrained and trainable encoder, and its counterpart with the un-
trained encoder, can be solely attributed to the prior knowledge imbibed
within the pretrained encoder. This discernment, congruous with prior
scholarly works such as [13,14], accentuates the potency of fine-tuning
and transfer learning in enhancing the efficacy of comparatively
compact classifiers while mitigating computational overheads. Addi-
tionally, upon meticulous analysis of the presented confusion matrices,
all suggested models distinctly attain a commendably consistent
class-wise accuracy, correlating well with the overall precision of each
model.

A previous study [13] had already demonstrated the efficacy of
employing MIMO AE to secure satisfactory results in HAR, even when
confronted with limited training data. However, previous outcomes
unveiled a substantial disparity of approximately 13% (pertaining to
50% of accessible data for training and validation) between the per-
formance of the designed classifier partnered with the pretrained and
untrainable encoder and its equivalent furnished with the pretrained
and trainable encoder [13]. In the current investigation, given the
modest 3% divergence within the outcomes of these classifiers, it is
rational to contend that the designed classifier integrating the pretrained
and untrainable encoder surfaces is the most promising approach
introduced herein. It merits mention that all outcomes, inclusive of those
emanating from the designed classifier, notably exceed the comparative
results elucidated in Ref. [13]. This marked enhancement is a direct
outcome of the deployment of the MFCC algorithm as the preprocessing
methodology, a facet hitherto unexplored in the preceding study.

4, Conclusion

The study explores the efficacy of amalgamating a formulated clas-
sifier with various iterations of a pretrained MIMO AE encoder,
employing MFCC derived from CSI data for HAR with limited training
data. The outcomes illustrate that adopting the devised classifier in
tandem with the pretrained and untrainable encoder yields an excep-
tional recognition rate. This is accomplished while retaining a relatively
modest count of trainable parameters, thus establishing a harmonious
equilibrium between computational expense and recognition precision.
Consequently, this model emerges as the most valuable among the four
proposed strategies. While human activity recognition models face
various challenges, such as lack of sufficient data, accuracy, optimiza-
tion and security, the suggested models reached a better level, regarding
of such aims, in two manners, i.e., lack of sufficient data and accuracy.

Additionally, the investigation underscores the significance of fine-
tuning and transfer learning with the pretrained encoder, culminating
in a noteworthy enhancement in the performance of the designed clas-
sifier paired with the pretrained and trainable encoder, as opposed to its
untrained counterpart. This observation aligns harmoniously with prior
scholarly inquiry, validating the effectiveness of leveraging such meth-
odologies to heighten the proficiency of compact classifiers sans inor-
dinate computational strain. A juxtaposition of these findings with
outcomes from a previous study, which concentrated on utilizing MIMO
AE for HAR within a restricted dataset, reveals a striking progression.
The introduction of the formulated classifier with the pretrained and
untrainable encoder substantially diminishes the performance discrep-
ancy when compared to the model equipped with the pretrained and
trainable encoder. This narrowing culminates in a modest 3% distinc-
tion, attributable to the utilization of the MFCC algorithm for feature
extraction.

In summation, the amalgamation of MFCC, MIMO AE, and fine-
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tuning techniques herald new avenues for HAR exploration, yielding
auspicious outcomes and paving the trajectory for the development of
more efficient and precise activity recognition systems in the times
ahead.

Summary

The study delves into Wi-Fi-based Human Activity Recognition
(HAR) employing Channel State Information (CSI) and deep learning
models. Challenges arise in acquiring sufficient training data across
diverse scenarios. Thus, a unique strategy is adopted: the utilization of a
pretrained Multi-Input Multi-Output Autoencoder (MIMO AE) coupled
with Mel Frequency Cepstral Coefficients (MFCC) for feature extraction.
This innovative approach yields remarkable outcomes, leveraging
notably fewer training data in contrast to conventional machine learning
methods.

Among the array of approaches explored, the application of the
designed classifier with the pretrained and untrainable encoder emerges
as the most efficacious. It showcases a noteworthy recognition rate while
maintaining a relatively modest count of trainable parameters. This
equilibrium successfully navigates the trade-off between computational
cost and recognition accuracy. The study underscores the significance of
fine-tuning and transfer learning with the pretrained encoder. This
practice leads to substantial enhancements in performance for the
designed classifier with the pretrained and trainable encoder, out-
performing the version with the untrained encoder. This correlation
aligns with earlier research, affirming the efficacy of such techniques in
bolstering small classifiers without overwhelming computational
demands.

Upon comparing the present findings with previous research
concentrated on MIMO AE for HAR with limited data, the proposed
approach manifests a significant stride. The incorporation of the
designed classifier with the pretrained and untrainable encoder effec-
tively narrows the performance disparity, resulting in a mere 3% devi-
ation. This distinction can be exclusively attributed to the application of
the MFCC algorithm for feature extraction. In essence, the study in-
troduces a pioneering avenue, harmonizing MFCC, MIMO AE, and finely
tuned methodologies, promising heightened efficiency and precision in
the realm of HAR research.

The funding statement

The authors received no financial support for the research, author-
ship, and/or publication of this article.

Data availability

The data, used in this study is publicly available on the web, and
accessible at https://github.com/parisafm/CSI-HAR-Dataset (Accessed
on 7 March, 2024).

CRediT authorship contribution statement

Amir Rahdar: Writing — review & editing, Writing — original draft,
Software, Methodology, Investigation, Conceptualization. Mahnaz
Chahoushi: Writing — original draft, Software, Investigation. Seyed Ali
Ghorashi: Writing — review & editing, Supervision, Conceptualization.

Declaration of generative Al and Al-assisted technologies in the
writing process

During the preparation of this work, the authors used ChatGBT
Service in order to enhance the language quality of the manuscript, by
editing the original text, written by the authors. After using this service,
the authors reviewed and edited the content as needed and take full
responsibility for the content of the publication.



A. Rahdar et al.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1]

[2

[3]

[4]

[5]

[6

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H. Park, N. Kim, G.H. Lee, J.K. Choi, MultiCNN-FilterLSTM: resource-efficient
sensor-based human activity recognition in IoT applications, Future Generat.
Comput. Syst. 139 (Feb. 2023) 196-209, https://doi.org/10.1016/j.
future.2022.09.024.

A. Maity, A. Pathak, G. Saha, Transfer learning based heart valve disease
classification from Phonocardiogram signal, Biomed. Signal Process Control 85
(Aug. 2023) 104805, https://doi.org/10.1016/j.bspc.2023.104805.

A. Sarkar, S.K.S. Hossain, R. Sarkar, Human activity recognition from sensor data
using spatial attention-aided CNN with genetic algorithm, Neural Comput. Appl. 35
(7) (Mar. 2023) 5165-5191, https://doi.org/10.1007/5s00521-022-07911-0.

P. Khan, Y. Khan, S. Kumar, M.S. Khan, A.H. Gandomi, HVD-LSTM based
recognition of epileptic seizures and normal human activity, Comput. Biol. Med.
136 (2021) 104684, https://doi.org/10.1016/j.compbiomed.2021.104684. Sep.
LM. Pires, F. Hussain, G. Marques, N.M. Garcia, Comparison of machine learning
techniques for the identification of human activities from inertial sensors available
in a mobile device after the application of data imputation techniques, Comput.
Biol. Med. 135 (2021) 104638, https://doi.org/10.1016/j.
compbiomed.2021.104638. Aug.

L. Koping, K. Shirahama, M. Grzegorzek, A general framework for sensor-based
human activity recognition, Comput. Biol. Med. 95 (Apr. 2018) 248-260, https://
doi.org/10.1016/j.compbiomed.2017.12.025.

H. Abedi, A. Ansariyan, P.P. Morita, A. Wong, J. Boger, G. Shaker, Al-powered
noncontact in-home gait monitoring and activity recognition system based on mm-
wave FMCW radar and cloud computing, IEEE Internet Things J. 10 (11) (Jun.
2023) 9465-9481, https://doi.org/10.1109/JI0T.2023.3235268.

J. Liu, H. Liu, Y. Chen, Y. Wang, C. Wang, Wireless sensing for human activity: a
survey, IEEE Communications Surveys & Tutorials 22 (3) (2020) 1629-1645,
https://doi.org/10.1109/COMST.2019.2934489.

W. Cui, B. Li, L. Zhang, Z. Chen, Device-free single-user activity recognition using
diversified deep ensemble learning, Appl. Soft Comput. 102 (Apr. 2021) 107066,
https://doi.org/10.1016/j.as0c.2020.107066.

X. Wang, C. Yang, S. Mao, ResBeat: resilient breathing beats monitoring with
realtime bimodal CSI data, in: GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Dec. 2017, pp. 1-6, https://doi.org/10.1109/
GLOCOM.2017.8255021.

Y. Xu, W. Yang, M. Chen, S. Chen, L. Huang, Attention-based gait recognition and
walking direction estimation in Wi-Fi networks, IEEE Trans. Mobile Comput. 21 (2)
(Feb. 2022) 465-479, https://doi.org/10.1109/TMC.2020.3012784.

J. Yang, Y. Liu, Z. Liu, Y. Wu, T. Li, Y. Yang, A framework for human activity
recognition based on WiFi CSI signal enhancement, Int. J. Antenn. Propag. 2021
(2021) e6654752, https://doi.org/10.1155/2021/6654752. Feb.

M. Chahoushi, M. Nabati, R. Asvadi, S.A. Ghorashi, CSI-based human activity
recognition using multi-input multi-output autoencoder and fine-tuning, Sensors
23 (7) (Jan. 2023), https://doi.org/10.3390/523073591. Art. no. 7.

P. Fard Moshiri, R. Shahbazian, M. Nabati, S.A. Ghorashi, A CSI-based human
activity recognition using deep learning, Sensors 21 (21) (Jan. 2021), https://doi.
0rg/10.3390/521217225. Art. no. 21.

Md M. Islam, S. Nooruddin, F. Karray, G. Muhammad, Human activity recognition
using tools of convolutional neural networks: a state of the art review, data sets,
challenges, and future prospects, Comput. Biol. Med. 149 (2022) 106060, https://
doi.org/10.1016/j.compbiomed.2022.106060. Oct.

E. Shalaby, N. ElShennawy, A. Sarhan, Utilizing deep learning models in CSI-based
human activity recognition, Neural Comput. Appl. 34 (8) (Apr. 2022) 5993-6010,
https://doi.org/10.1007/500521-021-06787-w.

T.R. Mim, et al., GRU-INC: an inception-attention based approach using GRU for
human activity recognition, Expert Syst. Appl. 216 (Apr. 2023) 119419, https://
doi.org/10.1016/j.eswa.2022.119419.

Md M. Islam, S. Nooruddin, F. Karray, G. Muhammad, Multi-level feature fusion for
multimodal human activity recognition in Internet of Healthcare Things, Inf.
Fusion 94 (Jun. 2023) 17-31, https://doi.org/10.1016/j.inffus.2023.01.015.

J. Li, H. Xu, Y. Wang, Multiresolution fusion convolutional network for open set
human activity recognition, IEEE Internet Things J. 10 (13) (Jul. 2023)
11369-11382, https://doi.org/10.1109/J10T.2023.3243476.

AM. Helmi, M.A.A. Al-qaness, A. Dahou, M. Abd Elaziz, Human activity
recognition using marine predators algorithm with deep learning, Future Generat.
Comput. Syst. 142 (May 2023) 340-350, https://doi.org/10.1016/j.
future.2023.01.006.

S. Yousefi, H. Narui, S. Dayal, S. Ermon, S. Valaee, A survey on behavior
recognition using WiFi Channel State information, IEEE Commun. Mag. 55 (10)
(Oct. 2017) 98-104, https://doi.org/10.1109/MCOM.2017.1700082.

T. Tegou, A. Papadopoulos, I. Kalamaras, K. Votis, D. Tzovaras, Using auditory
features for WiFi Channel State information activity recognition, SN COMPUT. SCI.
1 (1) (2019) 3, https://doi.org/10.1007/542979-019-0003-2. Jun.

13

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Computers in Biology and Medicine 172 (2024) 108232

I.A. Showmik, T.F. Sanam, H. Imtiaz, Human activity recognition from wi-fi CSI
data using principal component-based wavelet CNN, Digit. Signal Process. 138
(Jun. 2023) 104056, https://doi.org/10.1016/j.dsp.2023.104056.

N. Dua, S.N. Singh, S.K. Challa, V.B. Semwal, M.L.S. Sai Kumar, A survey on human
activity recognition using deep learning techniques and wearable sensor data, in:
N. Khare, D.S. Tomar, M.K. Ahirwal, V.B. Semwal, V. Soni (Eds.), Machine
Learning, Image Processing, Network Security and Data Sciences, In
Communications in Computer and Information Science, Springer Nature
Switzerland, Cham, 2022, pp. 52-71, https://doi.org/10.1007/978-3-031-24352-
3.5.

H. Zou, Y. Zhou, J. Yang, H. Jiang, L. Xie, C.J. Spanos, DeepSense: device-free
human activity recognition via autoencoder long-term recurrent convolutional
network, in: IEEE International Conference on Communications (ICC), 2018,

pp. 1-6, https://doi.org/10.1109/1CC.2018.8422895. May 2018.

L. Guo, et al., Towards CSI-based diversity activity recognition via LSTM-CNN
encoder-decoder neural network, Neurocomputing 444 (Jul. 2021) 260-273,
https://doi.org/10.1016/j.neucom.2020.02.137.

A. Dahou, M.A.A. Al-qaness, M.A. Elaziz, A.M. Helmi, MLCNNwav: multi-level
convolutional neural network with wavelet transformations for sensor-based
human activity recognition, IEEE Internet Things J. (-1) (2023) 1, https://doi.org/
10.1109/JI0T.2023.3286378.

A. Mihoub, A deep learning-based framework for human activity recognition in
Smart Homes, Mobile Inf. Syst. 2021 (2021) e6961343, https://doi.org/10.1155/
2021/6961343. Sep.

R. Vrskova, P. Kamencay, R. Hudec, P. Sykora, A new deep-learning method for
human activity recognition, Sensors 23 (5) (Jan. 2023) 5, https://doi.org/
10.3390/523052816.

M. Nabati, H. Navidan, R. Shahbazian, S.A. Ghorashi, D. Windridge, Using
synthetic data to enhance the accuracy of fingerprint-based localization: a deep
learning approach, IEEE Sensors Letters 4 (4) (2020) 1-4, https://doi.org/
10.1109/LSENS.2020.2971555. Apr.

S. Mitra, P. Kanungoe, Smartphone based human activity recognition using CNNs
and autoencoder features, in: International Conference on Trends in Electronics
and Informatics, ICOEI), 2023, pp. 811-819, https://doi.org/10.1109/
ICOEI56765.2023.10126051. Apr. 2023.

K. Thapa, Y. Seo, S.-H. Yang, K. Kim, Semi-supervised adversarial auto-encoder to
expedite human activity recognition, Sensors 23 (2) (Jan. 2023), https://doi.org/
10.3390/523020683. Art. no. 2.

A.G. Prabono, B.N. Yahya, S.-L. Lee, Atypical sample regularizer autoencoder for
cross-domain human activity recognition, Inf. Syst. Front 23 (1) (Feb. 2021) 71-80,
https://doi.org/10.1007/s10796-020-09992-5.

A. Rahdar, D. Gharavian, W. Jesko, Serial weakening of human-based attributes
regarding their effect on content-based speech recognition, IEEE Access 11 (2023)
24394-24406, https://doi.org/10.1109/ACCESS.2023.3255982.

F. Luo, E. Bodanese, S. Khan, K. Wu, Spectro-temporal modeling for human activity
recognition using a radar sensor network, IEEE Trans. Geosci. Rem. Sens. 61 (2023)
1-13, https://doi.org/10.1109/TGRS.2023.3270365.

X. Cheng, B. Huang, J. Zong, Device-Free human activity recognition based on
GMM-HMM using Channel State information, IEEE Access 9 (2021) 76592-76601,
https://doi.org/10.1109/ACCESS.2021.3082627.

Y. Fang, F. Xiao, B. Sheng, L. Sha, L. Sun, Cross-scene passive human activity
recognition using commodity WiFi, Front. Comput. Sci. 16 (1) (2021) 161502,
https://doi.org/10.1007/s11704-021-0407-8. Oct.

S. Mekruksavanich, W. Phaphan, N. Hnoohom, A. Jitpattanakul, Attention-based
hybrid deep learning network for human activity recognition using WiFi Channel
State information, Appl. Sci. 13 (15) (Jan. 2023), https://doi.org/10.3390/
appl13158884. Art. no. 15.

G. Lim, B. Oh, D. Kim, K.-A. Toh, Human activity recognition via score level fusion
of Wi-Fi CSI signals, Sensors 23 (16) (Jan. 2023), https://doi.org/10.3390/
523167292. Art. no. 16.

O. Custance, S. Khan, S. Parkinson, Classifying participant standing and sitting
postures using Channel State information, Electronics 12 (Jan. 2023) 21, https://
doi.org/10.3390/electronics12214500. Art. no. 21.

J. Su, Z. Liao, Z. Sheng, A.X. Liu, D. Singh, H.-N. Lee, Human activity recognition
using self-powered sensors based on multilayer Bi-directional long short-term
memory networks, IEEE Sensor. J. (-1) (2022) 1, https://doi.org/10.1109/
JSEN.2022.3195274.

M.H. Kabir, M.H. Rahman, W. Shin, Csi-lanet, An inception attention network for
human-human interaction recognition based on CSI signal,”, IEEE Access 9 (2021)
166624-166638, https://doi.org/10.1109/ACCESS.2021.3134794.

N. Hernandez, J. Lundstrém, J. Favela, I. McChesney, B. Arnrich, Literature review
on transfer learning for human activity recognition using mobile and wearable
devices with environmental technology, SN COMPUT. SCI. 1 (2) (2020) 66,
https://doi.org/10.1007/5s42979-020-0070-4. Feb.

A. Ray, M.H. Kolekar, R. Balasubramanian, A. Hafiane, Transfer learning enhanced
vision-based human activity recognition: a decade-long analysis, International
Journal of Information Management Data Insights 3 (1) (Apr. 2023) 100142,
https://doi.org/10.1016/j.jjimei.2022.100142.

0. Pavliuk, M. Mishchuk, C. Strauss, Transfer learning approach for human activity
recognition based on continuous wavelet transform, Algorithms 16 (2) (Feb. 2023),
https://doi.org/10.3390/a16020077. Art. no. 2.



