883 research outputs found

    Evolution of deformations in medium-mass nuclei

    Full text link
    Evolution of quadrupole deformations in sdsd and pfpf shell nuclei with mass A= 18\sim56 is studied by using deformed Skyrme Hartree-Fock (HF) model with pairing correlations. We point out that the quadrupole deformations of the nuclei with the isospin T=0 and T=1 show strong mass number dependence as a clear manifestation of dynamical evolution of deformation in nuclear many-body systems. The competition between the deformation driving particle-vibration coupling and the closed shell structure is shown in a systematic study of the ratios between the proton and neutron deformations in nuclei with T=|Tz_z|=1. Calculated quadrupole and hexadecapole deformations are compared with shell model results and available experimental data. A relation between the skin thickness and the intrinsic Q2_2 moments is also discussed.Comment: 26 pages, 8figure

    The Cranked Nilsson-Strutinsky versus the Spherical Shell Model: A Comparative Study of pf-Shell Nuclei

    Full text link
    A comparative study is performed of a deformed mean field theory, represented by the cranked Nilsson-Strutinsky (CNS) model, and the spherical shell model. Energy spectra, occupation numbers, B(E2)-values, and spectroscopic quadrupole moments in the light pf shell nuclei are calculated in the two models and compared. The result is also compared to available experimental data which are generally well described by the shell model. Although the Nilsson-Strutinsky calculation does not include pairing, both the subshell occupation numbers and quadrupole properties are found to be rather similar in the two models. It is also shown that ``unpaired'' shell model calculations produce very similar energies as the CNS at all spins. The role of the pairing energy in the description of backbending and signature splitting in odd-mass nuclei is also discussed.Comment: 14 pages, 20 figures, submitted to Phys.Rev.

    A comparative study of super- and highly-deformed bands in the A ~ 60 mass region

    Full text link
    Super- and highly-deformed rotational bands in the A ~ 60 mass region are studied within cranked relativistic mean field theory and the configuration-dependent shell-correction approach based on the cranked Nilsson potential. Both approaches describe the experimental data well. Low values of the dynamic moments of inertia J^(2) compared with the kinematic moments of inertia J^(1) seen both in experiment and in calculations at high rotational frequencies indicate the high energy cost to build the states at high spin and reflect the limited angular momentum content in these configurations.Comment: 11 pages, 4 PostScript figures, Latex, uses 'epsf', submitted to Phys. Lett.

    Obtainable Sizes of Topologies on Finite Sets

    Get PDF
    We study the smallest possible number of points in a topological space having k open sets. Equivalently, this is the smallest possible number of elements in a poset having k order ideals. Using efficient algorithms for constructing a topology with a prescribed size, we show that this number has a logarithmic upper bound. We deduce that there exists a topology on n points having k open sets, for all k in an interval which is exponentially large in n. The construction algorithms can be modified to produce topologies where the smallest neighborhood of each point has a minimal size, and we give a range of obtainable sizes for such topologies.Comment: Final version, to appear in Journal of Combinatorial Theory, Series

    Interpretation of the large-deformation high-spin bands in select A=158-168 nuclei

    Get PDF
    The high-spin rotational bands in Hf-168 and the triaxial bands in Lu nuclei are analyzed using the configuration-constrained cranked Nilsson-Strutinsky (CNS) model. Special attention is given to the up-sloping extruder orbitals. The relative alignment between the bands which appear to correspond to triaxial shape is also considered, including the yrast ultrahigh-spin band in Er-158. This comparison suggests that the latter band is formed from rotation around the intermediate axis. In addition, the standard approximations of the CNS approach are investigated, indicating that the errors which are introduced by the neglect of off-shell matrix elements and the cutoff at nine oscillator shells (N-max = 8) are essentially negligible compared to other uncertainties. On the other hand, the full inclusion of the hexadecapole degree of freedom is more significant; for example it leads to a decrease of the total energy of similar to 500 keV in the triaxial superdeformed (TSD) region of Hf-168

    Very high rotational frequencies and band termination in 73Br

    Get PDF
    Rotational bands in 73Br have been investigated up to spins of 65/2 using the EUROBALL III spectrometer. One of the negative-parity bands displays the highest rotational frequency 1.85 MeV reported to date in nuclei with mass number greater than 25. At high frequencies, the experimental dynamic moment of inertia for all bands decrease to very low values, indicating a loss of collectivity. The bands are described in the configuration-dependent cranked Nilsson-Strutinsky model. The calculations indicate that one of the negative-parity bands is observed up to its terminating single-particle state at spin 63/2. This result establishes the first band termination case in the A = 70 mass region.Comment: 6 pages, 6 figures, submitted to Phys. Rev. C as a Rapid Communicatio
    corecore