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Interpretation of the large-deformation high-spin bands in select A = 158–168 nuclei
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The high-spin rotational bands in 168Hf and the triaxial bands in Lu nuclei are analyzed using the
configuration-constrained cranked Nilsson-Strutinsky (CNS) model. Special attention is given to the up-sloping
extruder orbitals. The relative alignment between the bands which appear to correspond to triaxial shape is also
considered, including the yrast ultrahigh-spin band in 158Er. This comparison suggests that the latter band is
formed from rotation around the intermediate axis. In addition, the standard approximations of the CNS approach
are investigated, indicating that the errors which are introduced by the neglect of off-shell matrix elements and
the cutoff at nine oscillator shells (Nmax = 8) are essentially negligible compared to other uncertainties. On the
other hand, the full inclusion of the hexadecapole degree of freedom is more significant; for example it leads to
a decrease of the total energy of ∼500 keV in the triaxial superdeformed (TSD) region of 168Hf.

DOI: 10.1103/PhysRevC.86.014309 PACS number(s): 27.70.+q, 21.10.Re, 21.60.−n, 23.20.Lv

I. INTRODUCTION

The high-spin structure of deformed nuclei shows a variety
of interesting phenomena caused by the interplay between
collective and single-particle excitations. The region of nuclei
with Z ∼ 72 and N ∼ 94 is particularly fascinating. Potential
energy surface (PES) calculations, predict that these nuclei
constitute a new region of exotic shapes [1–3] coexisting
with normal prolate deformation (ε2 ∼ 0.23). At high spins
these nuclei may assume stable triaxial superdeformed (TSD)
shapes characterized by different moments of inertia for each
of the principal axes. These TSD minima, with deformation
parameters (ε2, γ ) ∼ (0.4,±20◦), are caused by large single-
particle shell gaps associated with proton numbers Z = 71 and
72, and neutron numbers N = 94 and 96 [4,5]. Experimentally,
such rotational bands have been reported in Lu (Z = 71)
isotopes [6–8].

An extensive search for TSD bands in Hf (Z = 72) isotopes
has also been carried out, and a number of strongly deformed
bands have been observed in 170–175Hf [9–13], where bands
in 170Hf [9] and 174Hf [11] have been tentatively assigned as
triaxial. On the other hand, the predicted TSD bands in 164Hf
and 166Hf have not been discovered. Indeed, according to the
analysis in Ref. [10], all observed strongly deformed bands in
170–175Hf are most likely near prolate, falling into two groups
corresponding enhanced deformation (ED) shapes (deforma-
tions enhanced with respect to the normal deformed nuclear
shapes) and superdeformed (SD) shapes. The ED bands with
ε2 ∼ 0.3 are built on the proton i13/2h9/2 configuration while
the SD bands involve the πi13/2 (proton) and νj15/2 (neutron)
orbitals. On the other hand, a high-spin band has been observed
in 168Hf [14–16] which appears to correspond to triaxial shape
with a deformation which is considerably larger than that of
the TSD bands in 161–167Lu.

The high-spin bands which have attracted most interest
recently are, however, the so-called ultrahigh-spin bands
which bypass the band-terminating states in 157–158Er [17] and
neighboring nuclei [18–20]. These bands were first assumed
to have a triaxial deformation similar to that of the TSD bands

in Lu nuclei, but recent lifetime measurements [21] show that
they are more collective and they are suggested to correspond
to either a larger triaxial deformation or possibly a similar
deformation as the Lu TSD bands but with rotation around
the intermediate axis (γ < 0). In a recent study [22], it was
concluded that these bands must correspond to a larger triaxial
deformation because the γ < 0 minimum appears to be a
saddle point if the rotation axis is allowed to change direction.
In any case, it has turned out to be difficult to find a consistent
interpretation within the standard CNS approach [23–25].
This is one reason why it appears important to investigate if,
within the CNS approach, it is possible to get a consistent
interpretation of the unique large-deformation TSD bands
which have been observed in 168Hf. In this context, we will
also demonstrate that the smaller deformation TSD bands in
Lu isotopes appears to get a ready interpretation in the CNS
formalism; see also Ref. [26].

Partly because of the large deformation of the TSD
band in 168Hf, some approximations of the CNS approach
become somewhat questionable. Therefore, we have made
some modifications in the formalism making it possible to
investigate the importance of including more oscillator shells
in the basis and to account for all matrix elements coupling
the different N shells of the harmonic oscillator basis. Most
important, however, is that, for the first time to our knowledge,
a complete minimization in the three hexadecapole degrees of
freedom has been carried out at a large triaxial deformation.

The motivation for the present work is to study high-spin
rotational bands in 168Hf and investigate their properties in
order to understand their nature. As a background, we will
consider the TSD bands in the Lu isotopes. The Er bands
have already been analyzed in Refs. [17,21] but we will
conclude with some additional comments. We do the calcu-
lations within the framework of the configuration-constrained
cranked Nilsson-Strutinsky (CNS) model [23–25], and another
motivation is to test and develop this formalism. The model
and standard approximations are explained in Sec. II. A brief
description of the structure of the observed TSD bands in Lu
isotopes using the CNS formalism is presented in Sec. III.
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Standard approximations of the CNS formalism are tested in
Sec. IV A while a complete minimization in the hexadecapole
space is carried out in Sec. IV B. The reference energy which
is often subtracted when presenting nuclear high-spin bands is
discussed in Sec. IV C. Then we study the experimental and
theoretical high-spin bands in 168Hf in Secs. V A and V B. In
Sec. V C, we compare these theoretical and the experimental
bands and find out which theoretical bands correspond to band
1, band 3, the ED band, and the TSD1 and TSD2 bands of
168Hf. Finally, we present some new points of view for the
yrast ultrahigh-spin 158Er band in Sec. VI.

II. THE STANDARD CNS FORMALISM

In the configuration-dependent cranked Nilsson-Strutinsky
(CNS) model [23–25], the nucleons are moving independently
of each other in a deformed and rotating mean field generated
by the nucleons themselves. The rotation or the effect of the
rotation is treated as an external potential. The mean-field
Hamiltonian used to describe a nucleon in the rotating nucleus
is the cranked modified oscillator Hamiltonian [23]

H = hHO(ε2, γ ) − κh̄ω0
[
2�t · s + μ

(
�2

t − 〈
�2

t

〉
N

)]
+V4(ε4, γ ) − ωjx. (1)

In this Hamiltonian, the cranking term ωjx is introduced
to make the deformed potential rotate uniformly around a
principal axis with the angular velocity ω. The index t in
the orbital angular momentum operator �t denotes that it is
defined in stretched coordinates [27,28]. For 168Hf, standard
values [23] are used for the single-particle parameters κ and μ,
which determine the strength of the �t · s and �2

t terms, while
A = 150 parameters [29] are used for the 161–167Lu and 158Er.
This is motivated by the fact that the A = 150 parameters have
been fitted for nuclei with N ≈ 90, while standard parameters
should be more appropriate for the well deformed nuclei in the
middle of the rare-earth region.

In Eq. (1), hHO(ε2, γ ) is an anisotropic harmonic-oscillator
Hamiltonian:

hHO(ε2, γ ) = p2

2m
+ 1

2
m

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
. (2)

The relation between the oscillator frequencies and ε2, γ is:

ωx = ω0(ε2, γ )

[
1 − 2

3
ε2 cos

(
γ + 2π

3

)]
,

ωy = ω0(ε2, γ )

[
1 − 2

3
ε2 cos

(
γ − 2π

3

)]
, (3)

ωz = ω0(ε2, γ )

[
1 − 2

3
ε2 cos γ

]
.

The deformation dependence of ω0(ε2, γ ) is determined from
volume conservation of the equipotential surfaces.

The total energy is obtained using the shell correction
method. Thus the shell energy, Esh, is calculated using the
Strutinsky procedure [30,31] and the total energy is defined
as the sum of the shell energy and the rotating liquid drop
energy [25,31], Erld,

Etot(I ) = Esh(I ) + Erld(I ). (4)

This renormalization ensures that the total nuclear energy
is correct on average. The Lublin-Strasbourg drop model [32]
is used for the static liquid drop energy with the rigid-body
moment of inertia calculated with a radius parameter r0 =
1.16 fm and a diffuseness parameter a = 0.6 fm [25]. Finally,
minimizing the total energy for a given angular momentum
with respect to deformation gives the equilibrium shape and
corresponding energy. Plots of the minimized total energy
versus spin I are frequently used in the description of high-spin
properties of rotating nuclei. To present considerably more
detailed information about individual and relative properties of
the rotational bands, the excitation energy is plotted relative to
a reference energy. Note that the same reference energy is uti-
lized for all theoretical and experimental energies in a nucleus.

Equation (1) represents the rotating modified oscillator
Hamiltonian in terms of the quadrupole ε2, non-axial γ , and the
hexadecapole ε4, deformation parameters. The dependence of
the Hamiltonian on the hexadecapole deformation is written as

V4 = 2h̄ω0ρ
2
[
ε40Y

0
4 (θt , ϕt ) + ε42

(
Y 2

4 (θt , ϕt ) + Y−2
4 (θt , ϕt )

)
+ ε44

(
Y 4

4 (θt , ϕt ) + Y−4
4 (θt , ϕt )

)]
, (5)

with [23,33]

ε40 = ε4
1

6
(5 cos2 γ + 1), ε42 = −ε4

1

12

√
30 sin 2γ,

(6)

ε44 = ε4
1

12

√
70 sin2 γ,

where θt and ϕt are the polar and azimuthal angles in stretched
coordinates and ρ is the radius in stretched coordinates. The
γ dependence in Eq. (6) is introduced in such a way that
the axial symmetry is preserved when γ = −120◦, −60◦, 0◦
or 60◦. All ellipsoidal shapes can be described within a 60◦
degree sector, but the rotation occurs around the shortest, the
intermediate and the longest principal axis for γ = [0◦, 60◦],
γ = [0◦, −60◦], and γ = [−60◦, −120◦], respectively.

Because the ε4i parameters depend on one parameter ε4,
there is only one hexadecapole degree of freedom. In a
standard calculation, the total energy is minimized by varying
three parameters: two quadrupole parameters, ε2 and γ , and
one hexadecapole parameter, ε4 [23]. The choice of the
deformation space to be used in a calculation is important.
Recently, some studies concentrating on the role of different
multipoles on the fission barrier heights have considered more
general hexadecapole deformations [34–36].

The rotating basis |nxn2n3�〉 can be utilized to diagonalize
the Hamiltonian matrix and to find eigenfunctions of Eq. (1)
[23]. Since the couplings of jx are fully accounted for in
the rotating basis, the only terms in Eq. (1) which couple
between basis states of different Nrot = nx + n2 + n3 are the
hexadecapole deformation potential V4, and the �t · s and �2

t

terms. The off-shell matrix elements of the latter terms are
small for reasonable rotational frequencies. The importance
of the off-shell matrix elements of the V4 term depends on
the deformation region, where hexadecapole deformations
generally become more important with increasing quadrupole
deformation. For small ε4 values it thus seems reasonable to
neglect all those matrix elements which are off shell in the
rotating basis and keep Nrot as a preserved quantum number.
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The important advantage of the rotating basis is that Nrot

(generally referred to as N below) can be treated as an exact
quantum number, making it possible to fix configurations in
great detail. It seems that this is the most important feature
explaining the success of the CNS approach; especially the
possibility of following, e.g., terminating bands in spin regions
where they are not yrast.

The diagonalization of the Hamiltonian, Eq. (1), gives the
eigenvalues ei

ω, which are referred to as the single-particle
energies in the rotating frame or the Routhians. Subsequently,
it is straightforward to calculate different expectation values
such as 〈jx〉 and 〈j 2〉. The diagonalization of the Hamiltonian
is performed with a cutoff in the single-particle basis which
may lead to errors in the results. The original CNS codes were
written with only nine oscillator shells (Nmax = 8) in the basis
and this is the maximum number of shells which has been used
in all subsequent CNS calculations, e.g., Refs. [17,24,37]. It
seems important to test these approximations, i.e., the neglect
the off-shell hexadecapole matrix elements and the cutoff in
the rotating single-particle basis.

In the present calculations, pairing correlations are ne-
glected, although it is quite evident that the pairing field
is essential for the description of atomic nuclei [38]. This
is seen, for example, from the observed energy gaps and
the suppression of the moments of inertia in rotating nuclei.
However, it appears that the most of the properties of nuclei
at high spins are rather insensitive to the pairing field. For
example, rotational bands have been studied by the cranked
Nilsson-Strutinsky approach [23–25], the cranked relativistic
mean-field theory [39–41] not including pair correlations,
and the cranked relativistic Hartree-Bogoliubov formalism
[42–44] including pair correlations. These studies show that,
in the high-spin regime, calculations without pairing describe
the data accurately. In view of this, it is often advantageous
to carry out calculations in an unpaired formalism because
of the more transparent description and, for the present CNS
calculations, the unique possibilities of fixing configurations,
making it possible to follow for example the drastic shape
changes in terminating bands [24,45].

In order to evaluate the importance of the pairing energy in
the odd-odd 76Rb nucleus, rotational bands have been studied
by the cranked Nilsson-Strutinsky-Bogoliubov (CNSB) for-
malism presented in Ref. [46] with particle number projection
and with energy minimization not only in the shape degrees
of freedom, ε2, γ , and ε4 but also in the pairing degrees of
freedom,  and λ and have been compared with the predictions
of the CNS model [47]. In these calculations, the contributions
from pairing are found to be small at low spin values and they
decrease with increasing spin. The pairing energies do not
change the general structure, which means that, for example,
the potential energy surfaces with pairing included are found
to be very similar to those in the CNS formalism.

The outcome from CNS and CNSB calculations have
also been compared in 161Lu [48,49]. It turns out that, for
I > 30, the inclusion of pairing will correspond to a small
renormalization of the moment of inertia but it does not affect
the general structure of the yrast line, band crossings, etc.
Especially, the terminating states for I ∼ 50 are essentially
unaffected by pairing correlations. With this in mind, we will

analyze the high-spin states of Lu isotopes and 168Hf in the
unpaired CNS formalism where our main interest is in those
configurations which cannot be isolated in present formalisms
with pairing included.

For A = 158–168 nuclei, it is convenient to label the
configurations by the dominant amplitudes of the occupied
orbitals and holes relative to the 146Gd (Z = 64, N = 82)
closed core; that is,

π (h11/2)p1 (h9/2f7/2)p2 (i13/2)p3 ,

ν(N = 4)−n1 (h11/2)−n2 (i13/2)n3 (i11/2, g9/2)n4 (j15/2)n5 ,

where the number of theN = 4 protons and h9/2, f7/2 neutrons
is determined from the total number of protons and neutrons
in a nucleus. We will often use the shorthand notation (where
the numbers in parentheses are omitted when they are equal to
zero),

[p1(p2p3), (n1n2)n3(n4n5)].

Note, however, that this is only for the purpose of labeling
the configurations; in the numerical calculations no core is
introduced and all or most of the couplings between j shells
are accounted for according to the different approximation
schemes.

III. TSD BANDS IN LU ISOTOPES

The TSD bands in Lu nuclei are characterized by an odd
i13/2 proton which plays an important role in the wobbling
excitation [6]. Apart from this, the occupied orbitals in these
bands have not been given much attendance. An exception
is Ref. [5], where the single-particle orbitals and the corre-
sponding shell gaps at TSD deformation were discussed. Here
we will try to demonstrate the filling of the orbitals in the
lowest TSD bands, indicating the contribution of the specific
orbitals which become occupied when the number of neutrons
increases. This is analogous to previous classifications of the
superdeformed bands in the A = 150 region [37,50,51]. A
preliminary report of the present classification was given at
the NS2008 conference [26].

As seen in Fig. 5(a) in Ref. [20] (and in Fig. 15 below drawn
at a somewhat larger deformation), the proton configuration
with two h9/2 and one i13/2 proton is favoured for TSD
deformations (ε2 ∼ 0.37, γ ∼ 20◦) for frequencies up to
h̄ω ∼ 0.6 MeV. Indeed, according to our calculations, this
is the proton configuration, 8(21), for the lowest calculated
TSD bands in the 161–167Lu isotopes. In order to understand
the neutron configurations, Fig. 1 is instructive. Starting from
the left, it shows the single-neutron orbitals for prolate shape
in the range ε2 = 0.09–0.25, then for ε2 = 0.25 as a function
of axial asymmetry γ , and finally for constant γ = 20◦, again
as a function of ε2. The neutron configurations of the TSD
bands in the Lu isotopes with N = 90–96 are then illustrated
at ε2 ≈ 0.40 (and γ = 20◦). The gap indicated for N = 92 is
responsible for the 163Lu configuration which has two holes in
N = 4 and two holes in h11/2 N = 5 orbitals combined with
six particles in N = 6 orbitals, i.e., the configuration (22)6.
As discussed, e.g., in Ref. [17], the holes in the up-sloping
N = 4 and h11/2 orbitals are very important for the formation
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FIG. 1. (Color online) The single-neutron orbitals drawn along a
path in the (ε2, γ ) plane in order to clarify the origin of valence orbitals
in the TSD minimum of A = 160–170 nuclei. The orbitals are labeled
by the approximate asymptotic quantum numbers, �[Nnz�], also for
γ �= 0, even though �, which is the projection of j , is not preserved in
this case. The up-sloping orbitals emerging from the subshells below
the N = 82, which are important when building strongly collective
bands, are highlighted. Note how the 1/2[400] and 3/2[402] orbitals
repel each other with increasing axial asymmetry, thus inducing
triaxial shape in configurations with holes in the 3/2[402] orbital.
The N = 92 shell gap of the TSD band in 163Lu is marked, and it is
then shown how the TSD bands in 161,165,167Lu are formed from holes
or particles in the valence orbitals.

of collective bands, where it is the coupling within the N = 4
orbitals which induces the triaxial shape according to the
mechanism described in Refs. [17,52].

A. Observed and calculated total energies

Adding one or two neutrons, Fig. 1 suggests that the
most favored configurations for 164,165Lu will be formed if
these neutrons are placed in the 5/2[523] orbital, where thus
two bands with different signature are formed in 164Lu. In
Fig. 2(a), where the observed [7,55,56] and calculated bands
are compared, it is the lowest TSD band in the respective
nuclei and in addition band TSD3 in 164Lu which are assigned
to the configurations discussed above. Note that, contrary to
Ref. [56], we have assumed that this TSD3 band has negative
parity. The assignment in Ref. [56] is based on Ref. [57] where
band TSD3 is given positive parity based on the assumption
that it is unlikely with a stretched M1 transition with such a
high energy as 1532 keV. We find this conclusion questionable
because, in the decay of TSD1, such transitions with 1452
and 1541 keV have been observed in Refs. [57] and [56],
respectively. Indeed, the similar decays of the TSD1 and TSD3
bands rather suggest to us that they have the same parity,
and this conclusion gets additional strong support from the
comparison with calculations, indicating that these two bands
are signature partners.

For 163Lu, the difference between calculations and experi-
ment shown in the lower panel of Fig. 2(a) is close to zero at
high spin, where pairing correlations which are not included
in the CNS formalism should be small. The differences then
get larger at lower spin values, indicating the increasing
importance of the pairing correlations. The curves for 165Lu
are similar, leading to nearly identical difference curves in
the lower panel of Fig. 2(a). The similarities between the
observed bands indicate that the orbital which is occupied
in 165Lu but not 163Lu is not strongly deformation polarizing
and is not giving any large spin contribution, as is the case for
the 5/2[523] orbital, which is selected in the calculations. The
two bands in 164Lu, come close to the average of the 163Lu
and 165Lu bands at high spin in Fig. 2(a). Indeed, this is the
case for all observed spin values in the (unpaired) calculations,
while at lower spin values the odd-N energies come higher in
experiment. This is what would be expected from a smaller
pairing energy in the odd compared with the even neutron
systems, and it should even be possible to get an idea of
the strength of the pairing correlations from this comparison.
Furthermore, the calculations predict the correct signature for
the favored bands in 164Lu. This gives additional support to
the present assignments even though the splitting is somewhat
overestimated in the calculations.

Figure 1 suggests that the additional holes in 161Lu relative
to 163Lu should be placed either in the i13/2, 5/2[642] orbital or
in the 1/2[400] orbital. The result of the detailed calculations,
see Fig. 2(b), is that the latter deexcitation, i.e., the neutron
configuration (42)6, is favoured for lower spin values while
the former deexcitation, i.e., the neutron configuration (22)4,
is favored for higher spin values. Indeed, it appears that this
agrees with experiment [53,54] because, in the observed band,
one can see a smooth crossing for spin values I = 30–40,
where the two unpaired configurations cross. Thus, with this
assignment and with our choice of spin values for the 163Lu
band, the difference curves in the lower panel of Fig. 2(b) have
almost the same shape as for 161Lu (where we have chosen an
excitation energy of the unlinked band in 161Lu similar to that
for the 163Lu band). Furthermore, with pairing included, the
crossing between the neutron (42)6 and (22)4 configurations
will be seen as a smooth paired crossing within the i13/2 orbitals
[49]. Note that the two neutrons which are shifted from down-
sloping to up-sloping orbitals lead to a considerably larger
deformation for the (42)6 configuration, ε2 ∼ 0.43, γ ∼ 23◦,
than for the (22)4 configuration, ε2 ∼ 0.37, γ ∼ 20◦. This
latter deformation is typical for the yrast TSD bands in the
other Lu isotopes with N = 92–96.

Coming to 167Lu, Fig. 1 indicates that the two additional
neutrons compared with 165Lu might be put in the 11/2[505]
orbital or in the 7/2[633] orbital. However, the detailed
calculations show that the latter configuration is much less
favored for spin values above I = 30 in accordance with the
general experience that it becomes energetically expensive
to build spin in configurations of high-j shells which are
half-filled or more than half-filled; see, e.g., Fig. 12.11 of
Ref. [28]. As seen in Fig. 2(b), the energy-vs-spin depen-
dence of the (20)6 configuration in 167Lu is close to that
of the (22)6 configuration in 165Lu, while the calculated
energy is considerably higher in 167Lu than in 165Lu in
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FIG. 2. (Color online) The observed energies of selected TSD bands for Lu isotopes are shown relative to the rotating liquid drop energy
in the upper panels, with the calculated bands assigned to them in the middle panels and the difference between calculations and experiment
in the lower panels. The TSD bands for 163,164,165Lu are shown in the panels to the left and those of 161,163,167Lu in the panels to the right;
163Lu is shown in both cases to facilitate the comparison. Solid lines correspond to positive-parity configurations and broken lines correspond
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α = −1/2 (α = 1). Note how these differences are almost identical for most of the bands where the differences between experiment and
calculations for the low-spin states are understood from the neglect of pairing correlations in the CNS calculations. The experimental data are
taken from Refs. [7,53–58].

disagreement with experiment. This discrepancy would dis-
appear if the h11/2 subshell was lowered by a few hundred
keV.

There are a few more observed TSD bands in Lu nuclei
which we have not considered here. There are three unlinked
bands in 162Lu [53]. It appears to be easy to assign spins
and excitation energies to these bands so that they agree with
calculations, but these assignments would be very tentative.
One could note however that the beginning of a band crossing
is observed in the TSD3 band which appears to be very similar
to the band crossing in 161Lu, suggesting a similar origin and
thus an appreciable deformation change also in 162Lu. Another
band which we have not discussed here is TSD2 in 164Lu [56].
One could expect a neutron configuration with all orbitals up
to the N = 94 gap occupied but with a hole in the unfavoured
5/2[642] orbital; see Fig. 1. Indeed, the parity and signature of
the observed band agree with this assignment but the curvature
of the E vs-I function of the calculated configuration appears
to be too large. In addition, the observed band appears to go
through a smooth band crossing which is not easy to explain.
There is an interesting branch of band TSD1 at high spin
which has a larger alignment and is referred to as X2 [56].
This branch might be assigned to the configuration with the
valence neutron excited from the favored 5/2[523] orbital to
the favored 1/2[770] i13/2 orbital; see Fig. 3 below. In addition,

there are several bands assigned as wobbling excitations in the
odd Lu isotopes, which will of course not be described by any
CNS configuration.

Figure 1 is drawn at no rotation, ω = 0, and is thus mainly
helpful for the understanding of configurations at low or inter-
mediate angular momenta. In order to get an understanding
of the configurations which are favored at higher angular
momentums, it is more instructive to draw a single-particle
diagram at ω > 0, which will lead to a more complicated
diagram because the orbitals will split into two branches
with signatures α = 1/2 and α = −1/2. Such a diagram is
provided in Fig. 3. It suggests that the favored configurations
for N = 90–94, i.e., for 161–165Lu, will be about the same as for
ω = 0, but for N = 96 (167Lu) it will be more favorable to put
the two extra neutrons in the lowest 1/2[770] orbital or in the
1/2[651] orbital (of j15/2 and i11/2, g9/2 origin, respectively).
This is also in agreement with the detailed calculations
which shows that such a configuration becomes favored in
energy at triaxial shape above I ∼ 35 when combined with
the same favored proton configuration as for the lower spin
states 8(21). At these higher frequencies and deformations,
it will, however, be favorable if also the deformation-driving
second proton i13/2 orbital will be occupied, leading to the
favored 8(22) configuration for 168Hf, which will be discussed
below.
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FIG. 3. (Color online) Similar to Fig. 1 but with rotation added,
i.e., a rotational frequency which increases linearly up to ω/ω0 =
0.05 in the “Nilsson diagram” to the left and then keeping this value
of the rotational frequency when axial asymmetry is added. Solid and
dotted lines are used for positive parity and dashed and dot-dashed
lines for negative parity, where dots are used for signature α = −1/2.

B. Effective alignments ieff

In our analysis of TSD bands in Lu isotopes, we will also
consider the differences of spin I at a constant frequency
h̄ω, and compare the experimental and theoretical data. This
quantity referred to as the effective alignment, ieff , has been
very important for the classification of the SD bands in the A =
150 region; see, e.g., Refs. [37,50,51]. It is a direct measure
of the contribution from different Nilsson orbitals. It is mainly
useful when pairing can be neglected, but for the Lu bands, the
pairing correlations are rather small and we can furthermore
assume that pairing gives about the same contribution if the
comparison is limited to the odd isotopes with an even number
of neutrons. Thus, effective alignments of neutron orbitals for
the lowest TSD bands in Lu nuclei are shown as a function of
rotational frequency (ω = Eγ /2), for the experimental bands
in Fig. 4(a) and for the theoretical configurations assigned to
these bands in Fig. 4(b). Note that in this case ieff is a measure
of the spin contribution from a pair of particles in the respective
orbitals.

The general agreement between experiment and theory
in Fig. 4 indicates that we do understand which orbitals
are filled in the lowest TSD bands in the odd Lu isotopes.
The spin contribution of the orbital which is being occupied
when going from 161Lu to 163Lu is very small and positive
at h̄ω � 0.5 MeV, but it changes for h̄ω � 0.5 MeV where
ieff turns negative. The calculated ieff shows the same feature,
which can be traced back to a change of structure in 161Lu from
[8(21),(42)6] to [8(21),(22)4] at h̄ω ∼ 0.5 MeV. The value of
ieff when comparing the bands in 163Lu and 165Lu is close
to zero but rather negative, corresponding to a small negative
spin contribution from the orbital which becomes occupied.
This orbital is located in the middle of the h9/2f7/2 subshells
and is labeled 5/2[523] in Fig. 1. When two neutrons are
added to 165Lu, a spin contribution close to zero is obtained
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FIG. 4. (Color online) Effective alignment ieff for Lu isotopes,
extracted from (a) experiment and (b) corresponding calculated
bands.

in both experiment and calculations for h̄ω � 0.5 MeV. This
agreement supports the assignment that it is the highest h11/2

orbital, 11/2[505], which is being occupied. Note that this
up-sloping orbital will have a strong shape polarization, i.e.,
the shape change will have an important contribution to ieff ;
see, e.g., Ref. [59]. The fact that calculations and experiment
diverge at smaller frequencies could be caused by increasing
pairing correlations so that the assumption that an orbital is
either filled or empty is strongly violated.

The present calculations show that the standard CNS
formalism provides a reasonable interpretation for the TSD
bands in Lu isotopes. However, it is questionable whether this
approach, including approximations pointed out in Sec. II, is
suitable to study also the TSD bands in 168Hf which have a
larger deformation. In the next section, these approximations
will be tested on 168Hf.

IV. ANALYSIS OF SPECIFIC FEATURES OF
THE CNS FORMALISM

Representative potential energy surfaces (PESs) with
(π, α) = (−, 1) for spins I = 1, 31, 41, 51, 61 are displayed
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FIG. 5. (Color online) Calculated potential-energy surfaces versus quadrupole deformation ε2 and the triaxiality parameter γ of 168Hf with
(π, α) = (−, 1) for spins I = 1, 31, 41, 51, and 61. Contour lines are separated by 0.25 MeV and the γ plane is marked at 15◦ intervals. Dark
regions represent low energy with absolute minima labeled with dots.

in Fig. 5 for 168Hf. Similar behavior is also found for the other
(π, α) combinations. At low spins, from I = 1 to I = 31,
the lowest-energy minimum in the PESs corresponds to a
almost prolate shape at (ε2, γ ) ∼ (0.23, 0◦). As the angular
momentum increases, this minimum migrates to a somewhat
larger deformation; for example (ε2, γ ) ∼ (0.26, 3◦) at spin
I = 41.

For spin values I � 50, the minimum energy corresponds
to a TSD shape at the deformation (ε2, γ ) ∼ (0.44, 20◦).

A. Off-shell matrix elements and more shells

As it has been pointed out in Sec. II, all off-shell elements
in the rotating basis |nxn2n3�〉 are small and it is therefore
natural to neglect them. If the off-shell matrix elements are
included, the shell number Nrot will not be a good quantum
number, and the rotating basis functions will lose their
advantage to diagonalize the Hamiltonian matrix. It is then
easier to use the stretched spherical harmonic basis functions
|Nt�tjt�t 〉 which are eigenkets of the spherical harmonic
oscillator Hamiltonian hHO(ε2, γ ), the square of the stretched
angular momentum j 2

t , and its projection jz,t . With these basis
functions, the cranking term couples between basis states of
the shells Nt and Nt ± 2 which have the same signature.

When calculating the total energy, we need the shell energy
and the rotating liquid drop energy [Eq. (4)]. The addition
of the off-shell elements will only effect the shell energy.
As illustrated in Fig. 6, the shell energies obtained from the
diagonalization of the Hamiltonian in the two cases come very
close for all spin values at a large triaxial deformation with
a typical (see below) hexadecapole deformation, ε4 = 0.028.
Note that even though the coupling between the Nrot shells
is neglected in the rotating basis, the jx term is still fully
accounted for because it is included in the basis. This is
contrary to the stretched basis where the finite basis size
corresponds to a (small) approximation. With more shells
included, this approximation will be negligible.

In the standard CNS calculations, all shells having the
principal quantum number less than or equal to Nmax = 8
are included in the diagonalization. The important question
is now if more shells are needed in order to reproduce the
solution accurately enough for a heavy nucleus such as 168Hf.
Naturally, the required value of Nmax depends on particle

number, the shape of the potential to be diagonalized, and
for the stretched basis also the rotational frequency ω. To
illustrate the importance of the cutoff error, the yrast energy
was calculated including off-shell couplings with Nmax = 12,
i.e., with four added shells. For the specific deformation
illustrated in Fig. 6, it turns out that the energy of the yrast line
with Nmax = 12 does not decrease relative to the calculation
with Nmax = 8 but rather it increases. The reason is that, with
the increase of the number of shells, both the total discrete and
smoothed energy decrease. The total discrete single-particle
energy with Nmax = 12 differs from that with Nmax = 8 by
about 30 keV for spins I � 40 and 120 keV for spins I � 40.
Since the corresponding smoothed single-particle energy is
shifted by about 90 keV at spins I � 40 and 260 keV at spins
I � 40, the resulting shell energy,

Esh =
∑

i

ei −
〈 ∑

i

ei

〉
(7)

differs only by ∼40 keV at spins I � 40 and ∼140 keV I � 40
from the corresponding value with Nmax = 8; see Fig. 6. Thus
for the equilibrium deformations of 168Hf in an extended spin
range, the cutoff at Nmax = 8 introduces only small changes
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FIG. 6. (Color online) The shell energy for the configuration
[8(22),(22)6(11)] with deformation parameters ε2 ∼ 0.43, γ ∼ 20◦,
and ε4 ∼ 0.028 in the 168Hf nucleus. The circles show the calculations
including the off-shell elements and Nmax = 12, the squares include
the off-shell elements and Nmax = 8, and the diamonds exclude the
off-shell elements and Nmax = 8.
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in Esh which are essentially negligible compared with other
uncertainties.

B. Minimization in five dimensions

In general, for axial symmetric shapes it is only the ε40

(with quantization around the symmetry axis) shape degree of
freedom which is expected to be of major importance because
the energy is even (independent of the sign) in ε42 and ε44.
This is only valid at no rotation around the perpendicular
axis, but if the rotational frequency is not extremely high,
it is still expected that only the ε40 degree of freedom will
be of major importance. Furthermore, shapes corresponding
to small quadrupole deformations are never far away from a
symmetry axis in the (ε2, γ ) plane, so it should be sufficient
to minimize the energy in only one ε4 degree of freedom
also in this case. This is supported by studies of the smooth
terminating bands in 109Sb [24,60] where the energy is lowered
by less than ∼50 keV when it is minimized in three ε4 degrees
of freedom [61]. For a triaxial shape and large quadrupole
deformation on the other hand, the full minimization in the ε4i

parameter space might be more important.
In order to make a full minimization in the five-dimensional

deformation space, the total energy of 168Hf is calculated at

the following grid points:

x = 0.18[0.02]0.44, y = 0.08[0.02]0.42,

ε40 = 0.005[0.01]0.045, ε42 = −0.02[0.01]0.02,

ε44 = −0.01[0.01]0.03,

where (x, y) are Cartesian coordinates in the (ε2, γ ) plane.
The (x, y) coordinates are connected with (ε2, γ ) by the
expressions

x = ε2 cos(γ + 30◦), y = ε2 sin(γ + 30◦).

In our numerical calculations, the quantization axis coincides
with the rotation axis to simplify the diagonalization. There-
fore, γ should be replaced by (γ + 120◦) in Eq. (6), when
defining the ε4i parameters. With this definition, we relabel the
principal axis but the same nuclear shapes are formed in the ε4i

space. Especially, it is for rotation around the symmetry axis
(γ = 60,−120◦) that axially symmetric shapes are formed
with only ε40 �= 0, while axially symmetric shapes at γ = 0◦
are described by all ε4i �= 0.

In Fig. 7, the 168Hf yrast energies are drawn relative to a ro-
tating liquid drop energy Erld as a function of spin I for the four
combinations of parity and signature, (π, α) = (+, 0), (+, 1),
(−, 0), and (−, 1). They are compared with the corresponding
energies from the minimization in the (ε2, γ, ε4) parameter
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FIG. 7. (Color online) The 168Hf yrast energies relative to a rotating liquid drop energy Erld as a function of spin I for the four combinations
of parity and signature, (+, 0), (+, 1), (−, 0), and (−, 1). The circles show the minimum energy in (ε2, γ, ε40, ε42, ε44) space of deformation
and the squares in (ε2, γ, ε4). Solid lines correspond to positive-parity configurations and broken lines correspond to negative parity. Similarly,
solid symbols correspond to signature α = 0 and open symbols correspond to signature α = 1. The steep increase at spin values I > 72,
which is most apparent for the (+, 0) and (−, 0) yrast energies, is mainly caused by the rotating liquid drop reference energy, which shows a
discontinuity when the equilibrium shape moves away from the γ = 60◦ axis; the “superbackbend” according to Ref. [31] (see Sec. IV C).
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FIG. 8. (Color online) The ε4i parameters as a function of spin I for the TSD configuration [8(22),(22)6(11)]. In the calculations, the
triaxiality parameter of Eq. (6) is (γ + 120◦). The × symbols are for the minimization process in the space (ε2, γ, ε4) while the ∗ symbols are
used for the minimization process in the space (ε2, γ, ε40, ε42, ε44).

space. In our calculations, the reference energy Erld is mini-
mized in a deformation space (ε2, γ, ε4) for each spin value.

As one can see, at spins 10 � I � 45, the yrast states
in the deformation space (ε2, γ, ε40, ε42, ε44) are only a few
keV lower in energy than that in the (ε2, γ, ε4) deformation
space. On the other hand, the gain in energy in the high-spin
region, I � 45, is important and amounts to 0.5 MeV at
some spin values. These findings are consistent with the
general expectations discussed above. Thus, according to the
potential-energy surfaces in the CNS calculations for 168Hf
(see Fig. 5), the yrast states are built from configurations which
have prolate shape with ε2 ∼ (0.23–0.26) for spin values below
I ∼ 45 but at nonaxial shape with (ε2, γ ) ∼ (0.44, 20◦) (TSD
shapes) for spins I � 45. Therefore, in the following, we do
the minimization process in the deformation space (ε2, γ, ε4)
to study the bands close to axial shape and in the deformation
space (ε2, γ, ε40, ε42, ε44) to study the TSD bands in 168Hf.

In order to illustrate the variation of the ε4i parameters in
the two cases, they are drawn in Fig. 8 as functions of spin I

for the TSD configuration, [8(22),(22)6(11)]. In the complete
minimization, the ε4i parameters get different values relative
to Eq. (6) in the full spin range, I = 30–80. The value of
the ε40 parameter becomes considerably larger, ε40 ∼ 0.035
compared with ε40 ∼ 0.020 in the restricted variation. The ε42

parameter changes sign over most of the spin range while the
ε44 parameter varies faster and gets larger values.

The discontinuity in the variations of the ε4i parameters
at spin I ∼ 65 is understood from a crossing of high-j
and low-j orbitals in this configuration, which is explained
below. The energy surfaces at spin I = 50 and for the same
[8(22),(22)6(11)] configuration are shown in Figs. 9(a)–9(c),
in the planes (ε40, ε42), (ε42, ε44), and (ε44, ε40) for a constant
value close to the minimum of the third parameter. These
figures indicate that the total energy is well behaved with only
one minimum in the (ε40, ε42, ε44) space.

C. The reference energy

In order to highlight the details of high-spin bands, their en-
ergy is often shown relative to a reference. For a long time, the
standard choice of such a reference has been Eref = CI (I + 1)
MeV/h̄2, where C is a constant [23] for a specific nucleus.
In calculations based on the CNS approach, the constant has

generally been chosen as C = 32.32A5/3 MeV [24], which
means that the reference energy corresponds to rigid rotation at
a prolate deformation, ε = 0.23, assuming a sharp nuclear ra-
dius r0A

1/3 with r0 = 1.2 fm. With this choice, the increase or
decrease of E(I ) − Eref is relevant and it becomes instructive
to compare rotational bands in different mass regions. On the
other hand, different constants have been used in the literature
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FIG. 9. Energy surfaces shown as functions of two of the three
ε4i parameters for the configuration [8(22),(22)6(11)] at spin I = 50
and quadrupole deformation parameters (ε2, γ ) = (0.43, 20◦). The
contour line separation is 0.1 MeV in (a) and 0.2 MeV in (b) and (c).
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so one should be careful before drawing any conclusions from
the slope of E(I ) − Eref curves. For examples, while the
A-dependent expression specified above gives C = 0.00665
for A = 163, the value C = 0.0075 has often been used for
the TSD bands in Lu nuclei; see, e.g., Refs. [54–56]. This
larger value of C leads to a substanaial down-slopes for the
observed energies of these bands, while these energies are
rather constant with our standard choice for C.

The absolute value of E(I ) − Eref is dependent not only on
the (shell) energy for a specific spin value but also on the (shell)
energy at the ground state. This appears reasonable for low-
and intermediate-spin states formed at similar deformation
as the ground state. However, for higher spin values, the
deformation or coupling scheme can be quite different and
it is then more reasonable to find an absolute reference,
independent of the ground state for that specific nucleus. Such
an absolute reference is provided by the rotating liquid drop
(RLD) model [62], which can be used in a similar way as
a static liquid drop model is used for nuclear ground states
[63,64]. With this in mind, a RLD reference was introduced
in Ref. [25], where it was concluded that a good fit to nuclear
high-spin states could be achieved using the Lublin-Strasbourg
drop (LSD) model [32] for the static liquid drop energy with
the rigid-body moment of inertia calculated with a radius
parameter r0 = 1.16 fm and a diffuseness a = 0.6 fm [65].
With this choice, it becomes possible to describe the absolute
energy of a nuclear high-spin state with a similar accuracy
(∼ ±1 MeV) to that of nuclear masses [25].

The rotating liquid drop energy at its equilibrium defor-
mation is plotted relative to the fixed reference CI (I + 1)
in Fig. 10(a). This value is thus showing the difference
concerning spin dependence of the “previous” and “present”
reference energies. Note that both these references are the same
for all bands in one nucleus, but that the mass dependence
is somewhat different. It is easy to understand the general
structure of the curve in Fig. 10(a). At low spin values, the
equilibrium deformation of the rotating liquid drop energy is
spherical, corresponding to a small moment of inertia and thus
a larger reference energy. With increasing spin, the increasing
oblate deformation of the rotating liquid drop energy corre-
sponds to an increasing rigid-body moment of inertia, and
at I ≈ 50 the difference starts to decrease, corresponding to
the same moment of inertia for the two reference energies.
At even higher spin at I ≈ 74, the so-called superbackbend
occurs [31,66], when the rotating liquid drop energy loses its
stability towards triaxial shape. This corresponds to a rapid
increase of the rigid-body moment of inertia, leading to large
negative values for higher spin values in Fig. 10(a).

It is now easy to understand the differences when the yrast
energies are plotted relative to the two differences in Figs. 7 and
10(b), respectively. Thus the general appearance is the same up
to I = 60–70 but with a larger tendency for decreasing values
at low spin with the rotating liquid drop reference. The large
differences are, however, at the highest spin values where the
equilibrium deformations in the CNS calculations are gener-
ally found at a large deformation with a small moment of in-
ertia, which corresponds a large down-slope when this energy
is shown relative to the CI (I + 1) reference; see Fig. 10(b).
With the rotating liquid drop reference on the other hand, the
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FIG. 10. (a) The difference between the reference energy based
on the LSD model, with a moment of inertia calculated from a
diffuse surface [25], and the standard I (I + 1) reference for the 168Hf
nucleus. (b) The 168Hf yrast energies relative to the standard I (I + 1)
reference. These energies, which are minimized in the (ε2, γ, ε4)
space of deformation, cf. Fig. 7, are shown as a function of spin I for
the four combinations of parity and signature, (+, 0), (+, 1), (−, 0),
and (−, 1).

reference energies and CNS energies will on average have the
same spin dependence, but a not-so-nice feature is that the large
changes in the reference energy at the superbackbend lead to a
somewhat strange behavior of the energies at I ≈ 74 in Fig. 7.

Let us also point out that the smaller radius parameter
combined with the diffuseness correction corresponds to es-
sentially the same rigid moments of inertia in the two reference
energies for mass numbers A = 150–200. For smaller mass
numbers on the other hand, the diffuseness correction becomes
more important. For example, in the A = 60 region, the spin
dependences of the two references are very similar for spin
values I = 0–15 but they become quite different at higher
spin values. Thus, already at I = 30, the energy of the rotating
liquid drop reference is 2–3 MeV smaller than the standard
CI (I + 1) reference.

V. THE HIGH-SPIN BANDS IN 168HF

A. Observed high-spin bands in 168Hf

Experimental excitation energies relative to a rotating liquid
drop energy Erld as a function of spin I, and spin, kinematic
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FIG. 11. (Color online) (a) Experimental excitation energies relative to that of a rotating liquid drop Erld as a function of spin I ; (b) spin as
a function of the rotational frequency; and (c) kinematic (J (1)) and (d) dynamic (J (2)) moments of inertia as a function of rotational frequency
h̄ω for band 1, band 3, ED, TSD1, and TSD2 bands in 168Hf. The data are taken from Refs. [14–16].

(J (1)), and dynamic (J (2)) moments of inertia as a function
of rotational frequency h̄ω are drawn in Figs. 11(a)–11(d),
respectively, for the five bands in 168Hf which are observed
well beyond I = 40, where pairing correlations should be
negligible. From Fig. 11(a) one can see that there is a break
in the rotational pattern at I ∼ 12 and I ∼ 40 in band 1
and at I ∼ 20 and I ∼ 40 in band 3. Furthermore, the spin
[Fig. 11(b)] and the J (1) moment of inertia [Fig. 11(c)] are
triple-valued for band 1 at I ∼ 12, i.e., band 1 goes through a
full backbend at this spin value. The source of this backbend
is the decoupling and spin alignment of an i13/2 neutron pair
from the pairing field [67]. The unsmoothness in J (1) and a
small peak in J (2) [Fig. 11(d)] at I ∼ 20 in band 3 indicates a
weak crossing at this spin. The larger variation of J (1) and a
huge jump in J (2) at I ∼ 40 (h̄ω ∼ 0.55) correspond to a larger
spin alignment in band 1 and band 3 at this spin. The excitation
energy varies smoothly for the ED, TSD1, and TSD2 bands,
which means there is no crossing in these bands, even though
the ED band displays a small rise or bump in the J (2) value
with the maximum at ∼0.45 MeV.

B. Calculated rotational band structures in 168Hf

For the prolate shape minimum (at ε2 ∼ 0.23) for (π, α) =
(+, 0) and (−, 1), calculated excitation energies for the low-
energy configurations in 168Hf are plotted relative to that of a
rotating liquid drop in Figs. 12(a) and 12(b), respectively.

As pointed out in Sec. IV B, these configurations are
obtained from energy minimization in the deformation
space (ε2, γ, ε4). The (+, 0) yrast line has the configuration
π (h11/2)8ν(i13/2)4 or [4,8] in the shorthand notation for spins
I ∼ 0–40; see Fig. 12(a). As the angular momentum increases,
the lowest state is obtained by exciting a proton from a high-j
orbital of h11/2 character to an orbital of h9/2f7/2 character
in the N = 5 shell. Therefore the yrast line is built from the
π (h11/2)7(h9/2f7/2)1ν(i13/2)4 orbitals or [7(10),4] in a short
spin range for I � 40. Then for I ∼ 44, the calculated yrast
configuration is [8(11),5] while the [7(11),4] configuration
comes lowest in energy at I ∼ 50. The single-particle oc-
cupancy in these configurations can be understood from
Figs. 13(a) and 13(b), where the single-particle Routhians are
plotted for protons and neutrons, respectively. The configura-
tion change in the (+, 0) yrast states at I ∼ 40 is explained
from the crossing between the 7/2[523] and 1/2[541] orbitals

at h̄ω ∼ 0.6 MeV. There is a large single-particle shell gap
associated with neutron number N = 96 that continues to
h̄ω ∼ 0.7 MeV [see Fig. 13(b)] so the neutron configuration
ν(i13/2)4 is favored up to spin values beyond I = 50.

The study of the calculated excitation energies for
the low-energy configurations with (π, α) = (−, 1) and
axially symmetric shapes [Fig. 12(b)] suggests that the
(−, 1) yrast line is built on configurations [8(10),4] and
[8(11),4] which correspond to π (h11/2)8(h9/2f7/2)1ν(i13/2)4

and π (h11/2)8(h9/2f7/2)1(i13/2)1ν(i13/2)4, respectively. These
two bands which cross at I ∼ 40 have the same (i13/2)4 neutron
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FIG. 12. (Color online) Calculated total excitation energies in
168Hf relative to a rotating liquid drop reference for low-energy
configurations with (a) (π, α) = (+, 0) and γ ∼ 0◦, (b) (π, α) =
(−, 1) and γ ∼ 0◦. Each band is shown by a label which is explained
in the text.
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FIG. 13. (Color online) Single-particle proton (a) and neutron
(b) energies as a function of rotational frequency (Routhians) at
the deformation ε2 ∼ 0.23, γ ∼ 0◦, and ε4 = 0.009. The orbitals
are labeled at h̄ω = 0 by the asymptotic quantum numbers. A few
important orbitals for the present interpretation are labeled by their
dominating j shell. The line types distinguish between different
(π, α) combinations: solid lines represent (+, +1/2), dotted lines
(+,−1/2), dashed lines (−,+1/2), and dash-dotted lines (−, −1/2).

configuration. The calculated deformations are (ε2, γ ) ∼
(0.23, 0◦) and (0.26, 5◦) for [8(10),4] and [8(11),4] con-
figurations, respectively. In Fig. 12(b), also the [5,8] and
[7(10),5] configurations are drawn. They have normal defor-
mation, (ε2, γ ) ∼ (0.23, 0◦), and cross at spin I ∼ 50. The
configuration π (h11/2)8(h9/2f7/2)1(i13/2)1ν(h11/2)−2(i13/2)6 or
[8(11),(02)6] in shorthand notation has the deformation
(ε2, γ ) ∼ (0.3, 1◦). In fact, the two holes in h11/2 neutron
orbitals [see Fig. 13(b)] lead to an enhanced deformation.

The calculated energies at the TSD minimum are drawn
in Fig. 14(a) for six low-energy configurations of 168Hf. The
associated dynamic moments of inertia are given as a function
of rotational frequency in Fig. 14(b). As discussed above, the
total energy is minimized in a five-dimensional deformation
space (ε2, γ, ε40, ε42, ε44) in this case. All TSD bands are
built on the proton configuration π (h11/2)8(h9/2f7/2)2(i13/2)2

or [8(22)]. This is understood from a proton single-particle
shell gap at (ε2, γ ) ∼ (0.43, 20◦) for Z = 72 which is seen in
Fig. 15(a).

For neutrons at TSD deformation, a large energy gap
is calculated for N = 97 as anticipated from Fig. 3 and
seen in Fig. 15(b). This suggests that 169Hf should be a
good candidate to observe TSD bands experimentally. The
lowest N = 96 configurations are formed from a neutron
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FIG. 14. (Color online) (a) Calculated total excitation energies
relative to a rotating liquid drop reference as a function of spin
for six low-energy configurations with TSD shape, and (b) J (2)

values as a function of rotational frequency for the six low-lying
collective configurations in 168Hf. Each band is shown by a label
which is explained in text. Solid lines correspond to positive-
parity configurations and broken lines correspond to negative parity.
Similarly, solid symbols correspond to signature α = 0 and open
symbols correspond to signature α = 1.

hole in the two signatures of the (g7/2d5/2), (h9/2f7/2), and
(i11/2g9/2) orbitals below the N = 97 gap, resulting in six
different neutron configurations. Five of these together with
one configuration with twoN = 7 neutrons are combined with
the favored proton configuration, forming the six low-energy
triaxial structures shown in Fig. 14(a). Note that all the neutron
configurations are built on six neutrons in i13/2 orbitals, two
holes in h11/2 orbitals, and two, three, or four holes in N = 4
orbitals. The calculated deformation is (ε2, γ ) ∼ (0.49, 22◦)
for the [8(22),(42)6(22)] configuration while it is (ε2, γ ) ∼
(0.4–0.45, 20◦) for the other TSD configurations. All of the
theoretical TSD bands shown in Fig. 14(a) display a decreasing
value of J (2) with increasing rotational frequency. At h̄ω �
0.45 MeV, the value of J (2) decreases more strongly for the
configuration [8(22),(42)6(22)] and more smoothly for the
[8(22),(22)6(11)]. The values of J (2) are very close together at
h̄ω � 0.45 MeV and only the configuration [8(22),(22)6(11)]
experiences a sharp discontinuity in the J (2) moment of inertia
at h̄ω ∼ 0.7–0.8 MeV. This discontinuity is because of a
crossing in the neutron single-particle orbitals between a high-
ji13/2 orbital and a low-j (i11/2g9/2) orbital at h̄ω ∼ 0.7 MeV.
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FIG. 15. (Color online) Single-particle proton (a) and neutron
(b) energies as a function of rotational frequency (Routhians) at
the deformation ε2 ∼ 0.43, γ ∼ 20◦, and ε4 = 0.03. The orbitals
are labeled at h̄ω = 0 by the N shell to which they belong
with the ordering within the N shell as a subscript. A few
important orbitals for the present interpretation are also labeled
by their dominating j shell(s). The line types distinguish between
different (π, α) combinations: solid lines represent (+, +1/2),
dotted lines (+, −1/2), dashed lines (−, +1/2), and dash-dotted
lines (−, −1/2).

The crossing is indicated by a circle in Fig. 15(b). In the other
TSD configurations the (i11/2g9/2) orbital has been filled and
therefore the strong alignment at h̄ω ∼ 0.7 MeV is blocked
and there is no anomaly in their J (2) moments of inertia.

In the calculations, no distinction is made between low-j
and high-j orbitals at this large deformation, i.e., only the
number of particles of signature α = 1/2 and α = −1/2 in
each Nrot shell is fixed. On the other hand, the configurations
are labeled as if such a distinction is made. The labels in
Fig. 14(a) refer to the configuration for spin values below
I ∼ 60. For example, the energy of the configuration labeled
[8(22),(22)6(11)] comes down at spin I ∼ 62, because of the
crossing discussed above. Thus, the band should be labeled
[8(22),(22)5(21)] for higher spin values.

C. Comparison between calculated and experimental
bands in 168Hf

In the upper panels of Fig. 16, experimental excitation
energies relative to a rotating liquid drop energy for band
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FIG. 16. (Color online) Experimental energies (top panels) and
theoretical energies (middle panels) relative to a rotating liquid drop
reference and their differences (lower panels) as a function of spin for
(a) band 1 and band 3 and (b) ED, TSD1, and TSD2 bands in 168Hf.

1, band 3, the ED band, and the TSD1 and TSD2 bands are
drawn as a function of spin. The middle panels of Fig. 16
display the calculated bands which seem to be closest to these
experimental bands. In the lower panels, experimental and
theoretical bands are compared (with attention to their parity
and signature) and their differences are illustrated.
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1. Band 1

The observed band 1 has a positive parity and signature
α = 0. Therefore one can find out the structure of this band
from the search among the lowest-energy configurations which
have (π, α) = (+, 0) [Fig. 12(a)]. As is pointed in Sec. V B, in
Fig. 12(a) the [4,8] and [7(10),4] configurations are the lowest
states in energy at spins I � 40 and I � 40, respectively.
The [4,8] configuration has an even number of neutrons in i13/2

orbitals. Thus the observed backbending at I ∼ 12 in band 1
(see Sec. V A) could occur in this configuration. Furthermore,
the change of structure from [4,8] to [7(10),4] which happens at
spin I ∼ 40 corresponds to the observed break in the rotational
pattern at I ∼ 40 in this band [see Figs. 11(a)–11(d)]. Band 1
is compared with the [4,8] and [7(10),4] configurations in the
lower panel of Fig. 16(a). As one can see, the differences
between the theoretical and experimental data for band 1
are rather constant and about −1 MeV at spins I � 35 if a
transition occurs from [4,8] to [7(10),4].

The same structure has been obtained for band 1 in Ref. [16]
using the ULTIMATE CRANKER code [29,68]. However, it is
concluded [16] that the occupation of the 1/2 [541] orbital at
I ∼ 40 is related to the crossing between the proton orbitals
9/2[514] and 1/2[541]. This is contrary to our calculations
[see Fig. 13(a)] where the 9/2[514] orbital is above the Fermi
surface and thus the transition is because of the crossing
between the 7/2[523] and 1/2[541] orbitals. A closer look
at Fig. 5 of Ref. [16] indicates that there are two h11/2

quasiparticles at similar energies, where one should then
mainly correspond to a hole in the 7/2[523] orbital and the
other to a particle in the 9/2[514] orbital. Then, it appears that,
if the number of particles should not be changed drastically,
the added particle in 1/2[541] should be combined with a hole
in 7/2[523], contrary to the conclusion in Ref. [16].

2. Band 3

Band 3 is observed from I = 7 to I = 47 and has (π, α) =
(−, 1). Excitation energies, spin, and J (1) and J (2) behavior of
this band are close to those of band 1 [see Figs. 11(a)–11(d)].
Thus it seems that this band has a similar deformation to
that of band 1. The lowest-energy states with (π, α) = (−, 1)
[see Fig. 12(b)] suggest that the [8(10),4] and [8(11),4]
configurations should be assigned to band 3. However, as we
see in Figs. 11(a)–11(c), in contrast to band 1, band 3 does not
backbend at low spins. Therefore the neutron configuration of
this band could not be the same as that of band 1 (which has
four neutrons in i13/2). As pointed in Sec. V B, the [5,8] and
[7(10),5] configurations have almost the same deformation
as band 1 and they also have an odd number of neutrons
in i13/2 orbitals. Thus, even though these two configurations
are calculated to be about 0.5 MeV higher in energy than
[8(10),4] and [8(11),4] [see Fig. 12(b)], they are more suitable
candidates for band 3. As one can see in Fig. 12(b), there
is a crossing between [5,8] and [7(10),5] at spin I ∼ 50
which is in agreement with the observed crossing in band
3 experimentally. In the lower panel of Fig. 16(a) band 3 has
been compared to the [5,8] and [7(10),5] configurations. With
the transition from the [5,8] to the [7(10),5] configuration,

the differences between the calculated bands and band 3 are
almost constant at −0.5 MeV for spins I � 35. Therefore
band 3 is built from the (i13/2)5 neutron configuration and the
proton configuration is the same as that for band 1, (h11/2)8 at
I � 50 and (h11/2)7(h9/2f7/2)1 for I � 50. This interpretation
is similar to that of Ref. [16], but with the same difference as
discussed above for band 1.

3. Band ED

The ED band (called TSD2 in Ref. [14]) has
(π, α) = (−, 1) and is observed from I = 23 to I = 49.
The calculations, as depicted in Fig. 12(b), show that
π (h11/2)8(h9/2f7/2)1(i13/2)1ν(i13/2)4 or the [8(11),4] configu-
ration is lowest in energy for spins I � 40. This configuration,
which corresponds to axially symmetric shape, has been
suggested for the ED band in 168Hf [15]. The calculated
quadrupole deformation value, ε2 ∼ 0.26, γ ∼ 5◦, is near
normal deformation and far from that of the ED bands in the
other Hf isotopes, ε2 ∼ 0.3 [10]. The suggested configurations
for the ED band in Hf isotopes are all built on the same
proton configuration, i13/2h9/2, but they are coupled to different
neutron configurations [10,15].

A common feature of most interpretations of strongly
collective bands is that only the high-j intruder orbitals from
the higher shells are listed explicitly in the configurations.
These high-j orbitals are important to build the spin, but on the
other hand it is rather the extruder orbitals from the lower shells
which build the collectivity. This is evident for the smooth
terminating bands [24] and it has been underlined that it is
the case for more collective bands; see, e.g., Refs. [17,69].
However, to our knowledge, it is only in the present CNS
approach that methods have been developed to fix the number
of particles in the extruder orbitals. In the present case, the
highest h11/2 orbital is just below the Fermi surface. Thus we
consider the configuration with two holes in the up-sloping
11/2[505] orbital, i.e., [8(11),(02)6]. This configuration is
about 1 MeV higher than [8(11),4] in energy; see Fig. 12(b).
However, as pointed in Sec. V B, the [8(11),(02)6] config-
uration has a larger value for the quadrupole deformation,
(ε2, γ ) ∼ (0.3, 1◦), which is in agreement with that of in the
other Hf isotopes. Especially, the experimental properties of
the ED band are clearly different from those of the valence
space band, and it is only with the holes in the h11/2 neutron
orbitals that also the theoretical configuration becomes clearly
different from the valence space configurations. With the
[8(11),(02)6] interpretation for the ED band, the difference
between calculations and experiment becomes small and
almost constant as seen in the lower panel of Fig. 16(b). It
also suggests that such configurations with holes on the h11/2

neutron orbital, below N = 82, should be investigated for the
ED bands in other Hf isotopes. Furthermore, as mentioned in
Ref. [17], it appears that the same mechanism with holes in the
h11/2 neutron orbitals is responsible for the large quadrupole
moment in the SD band of 175Hf.

One problem with the present interpretation is that the
[8(11),(02)6] configuration is calculated at an excitation en-
ergy which is somewhat too high relative to the configurations
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assigned to band 3. However, these differences are clearly
within the expected uncertainties. For example, if the neutron
h11/2 subshell was placed 0.5 MeV higher in energy, the
[8(11),(02)6] configuration would be calculated close to yrast.
Note also that when the [8(11),(02)6] configuration is not
calculated as yrast, it is straightforward to study it only in
approaches such as the present one, where it is possible to fix
the number of holes (or particles) in specific orbitals.

4. TSD1 and TSD2 bands

The observed TSD bands in 168Hf [15] have not been
linked to the normal-deformed level scheme so their spin
and excitation energy can only be estimated. The struc-
ture π (i13/2)2ν(j15/2i13/2) has been suggested as the most
probable intrinsic configuration for the TSD1 band. Our
calculations with a complete minimization in ε4 show that
the [8(22),(22)6(11)] configuration is the lowest-energy TSD
configuration at spins I � 50; see Fig. 14(a). Note that these
two suggested configurations are identical with the same
high-j orbitals occupied but, in the unpaired CNS formalism,
also the occupations of other orbitals are specified, including
the extruder neutron orbitals with their main amplitudes in the
h11/2 and N = 4 shells, respectively.

The [8(22),(22)6(11)] configuration with (π, α) = (−, 0)
is about 0.5 MeV lower than the next lowest-energy TSD
configuration ([8(22),(32)6(21)] with α = 1) at spins I � 45.
Band TSD1 has been measured up to I ∼ 60 where the
[8(22),(22)6(11)] configuration is calculated to be only a
few hundred keV above the yrast line. Thus, we choose
this configuration as our favored candidate for TSD1 and
compare the two bands in the lower panel of Fig. 16(b). This
configuration choice suggests that the observed band TSD1
has negative parity and even spin (α = 0).

TSD1 is plotted with an assumed bandhead spin of I = 34h̄
and with an energy of 11.6 MeV for the bandhead. This
leads to a good fit between the observed band and the
calculated configuration [8(22),(22)6(11)], where the short-
hand notation corresponds to π (h11/2)8(h9/2f7/2)2(i13/2)2 and
ν(N = 4)−2(h11/2)−2(i13/2)6(i11/2g9/2)1(j15/2)1 for the occu-
pation of the open proton and neutron subshells. The calculated
quadrupole moment of the configuration [8(22),(22)6(11)] is
in the range 11.8–9.9 eb for spin values I = 30–80, which
is in agreement with the experimentally measured value of
Qt = 11.4+1.1

−1.2 eb [14]. However, the calculated quadrupole
moment is similar for all configurations in the TSD minimum,
so it does not help to discriminate between the different
configurations listed above.

The configuration assignment to the TSD1 band is certainly
preliminary and one might for example argue that we should
rather choose a configuration which is calculated yrast at the
highest observed spin value, I ∼ 60. This would then rather
suggest [8(22),(22)6(21)] or [8(22),(32)6(21)] as the favored
choice, i.e., configurations with one more neutron excited to
the i11/2g9/2 orbitals. In addition to the high-j particles, the
TSD minimum is characterized by at least two h11/2 and two
N = 4 neutron holes. This is the case also for the calculations
presented in Ref. [15] even though these holes are not specified

in the configuration labels used in that reference. As pointed
out in Sec. III, these holes are important to create the smooth
collective bands where it is mainly the N = 4 holes which
induce the triaxial shape.

Based on comparisons with calculations and with the TSD1
band [see Figs. 14(a) and 16(b)], the spin and bandhead
energy for the TSD2 band are estimated to be 41h̄ and
14.7 MeV, respectively. As pointed out above, the next lowest
TSD configuration for I ∼ 40–50 is [8(22),(32)6(21)] with
(π, α) = (−, 1). This configuration is yrast for 55 � I � 70.
Therefore it seems that this configuration is a reasonable
candidate for the observed TSD2 band. As one can see in
the lower panel of Fig. 16(b), the energy difference between
the TSD2 band and the [8(22),(32)6(21)] configuration is small
and rather constant for I � 50. Considering the configurations
in Fig. 14(a), another possible choice is the [8(22),(22)6(21)]
configuration with (π, α) = (+, 1). Thus, the present calcula-
tions suggest that compared with TSD1, TSD2 has the same
proton configuration but with one neutron excited to i11/2g9/2

from either the N = 4 orbitals or from the h9/2f7/2 orbitals.
This leads to odd spin values (α = 1) but undetermined parity
for TSD2.

The configurations of the TSD1 and TSD2 bands could
be interpreted by considering the behavior of the dynamic
moment of inertia. Although the spin assignments for these
TSD bands may need revising, the dynamic moments of inertia
are not affected by these changes. A smooth decrease in
the J (2) moment is observed for the TSD1 and TSD2 bands
(see Fig. 17), which is consistent with the general trend of
TSD bands in the other Hf isotopes [11,13,70]. Figure 17
also displays three configurations that have characteristics
similar to the two observed TSD bands. On the other hand,
the absolute value of J (2) is somewhat smaller in calculations
than in experiment, which can also be concluded from the
positive curvature in the difference curves in the lower panel
of Fig. 16(b). The TSD1 band and the [8(22),(22)6(11)]
configuration have rather similar slopes in J (2) throughout the
observed frequency range. The value of J (2) for the TSD2 band
has a behavior similar to that of two suggested configurations,
but the calculated dynamic moment of inertia is the same for
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FIG. 17. (Color online) Theoretical and experimental dynamic
moments of inertia J (2) as a function of rotation frequency h̄ω for
168Hf.
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the other TSD configurations [see Fig. 14(b)] so it does not
help to choose a favorable configuration for the TSD2 band.

VI. ADDITIONAL COMMENTS ON THE TSD BANDS IN
A = 158–168 NUCLEI.

A. Full minimization in Lu isotopes and 158Er

We have examined the full minimization approach in the
hexadecapole deformation space (see Sec. IV B) for TSD
configurations in Lu isotopes. Our calculations show that
this effect will typically decrease the minimum energy by
200 keV in the observed spin region (I � 50). The maximum
gain of about 300 keV is obtained in 165Lu, which has a
large hexadecapole equilibrium deformation, ε4 ∼ 0.04. These
effects will lead to some minor corrections to the results
presented in Sec. III but they will clearly not change the general
conclusions.

Similar calculations have been carried out for 158Er where,
according to studies in Refs. [20,21], three well defined
TSD minima with deformations (ε2, γ ) ∼ (0.37,±20◦) and
(ε2, γ ) ∼ (0.45, 20◦) are seen. Our calculations show that a
complete minimization in ε4 has only a small influence on the
energy. The gain in energy is always smaller than 200 keV for
the TSD configurations in 158Er.

B. Effective alignments in a larger mass range
from 158Er to 168Hf

It is instructive to consider the alignment in a larger mass
range outside the Lu isotopes. Therefore, in Fig. 18 the
difference in alignment between the lowest TSD bands in
163Lu and 168Hf is shown for the experimental bands and for
the configurations we have assigned to these bands. In the
calculations, we have chosen the spin values for the unlinked
band in 168Hf based on the present calculations, and this will
naturally lead to a general agreement between 163Lu and 168Hf
concerning the effective alignment. Considering the orbitals
which are filled in 168Hf but not in 163Lu, it is mainly the i13/2

proton and the j15/2 and i11/2 neutrons which build the large
effective alignment of almost 12h̄, while the filling of twoN =
5 neutron orbitals will only have a small contribution to ieff .

It is then also instructive to compare the spin difference
between the lowest TSD bands in 158Er and 163Lu, which
is drawn for experiment and calculations in the upper and
lower panels of Fig. 18, respectively. Several possible theo-
retical assignments are shown, corresponding to the lowest-
energy configurations in the minima with ε2 ≈ 0.34, γ ≈ 20◦
(TSD1), ε2 ≈ 0.34, γ ≈ −20◦ (TSD2) and ε2 ≈ 0.43, γ ≈
25◦ (TSD3), where the different minima are labeled as in
Ref. [21]. Furthermore, it should be noted that the spin values
in 158Er are not known and have been chosen in the range
I = 23h̄–65h̄ as suggested in Ref. [17]. If these spin values are
increased (decreased) by Ih̄, it will correspond to a constant
decrease (increase) for values of the curve in the upper panel
by Ih̄, but with no change of the spin dependence.

The TSD1 configuration of 158Er and the TSD band of
163Lu have similar deformations, so the corresponding value
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FIG. 18. (Color online) Effective alignment ieff extracted from
(a) experiment and (b) calculated configurations. The TSD bands in
163Lu and 158Er, and in 168Hf and 163Lu, respectively, are compared
when calculating ieff . For 158Er, configurations at positive γ and
smaller (TSD1) and larger (TSD3) ε2 and negative γ (TSD2) are
considered.

of ieff measures the spin contribution from the orbitals which
are filled in 163Lu but not in 158Er; i.e., two h11/2 and one
h9/2 protons and two i13/2 neutrons. They will then give
a negative contribution to ieff in agreement with general
expectations for orbitals in the middle of a j shell; see, e.g.,
Fig. 27 of Ref. [23]. When it comes to the configurations
in the TSD2 and TSD3 minima, the value of ieff does
not correspond to the contribution of any specific orbitals
because these configurations do not have a common core with
163Lu.

In any case, it is still possible to define the difference
in spin value for a fixed frequency, and the comparison
between experiment and calculations in Fig. 18 shows that
it is necessary to increase the spin values in 158Er by 4h̄–8h̄
to get agreement at the highest frequencies for the TSD3
configurations. For the TSD2 configuration on the other hand,
experiment and calculations come close for all frequencies
with present spin values. Note especially that a down-slope
is seen both in experiment and calculations for frequencies
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h̄ω ≈ 0.35–0.50 MeV. This down-slope corresponds to an
additional alignment of ∼4h̄ in this frequency range for 158Er
relative to 163Lu. Such an alignment gives rise to a bump in
the J (2) moment of inertia as discussed in some detail for the
corresponding bands in 159,160Er in Ref. [20]. As discussed
there, the alignment is caused by a crossing between an h11/2

proton orbital and the lowest h9/2 orbital. As seen in Fig. 18,
while the observed alignment is approximately reproduced
for the TSD2 configuration, no similar alignment is seen in
the TSD1 and TSD3 configurations. In Ref. [20], a bump in
the J (2) moment of inertia for the TSD1 band, caused by a
crossing between the N = 6 neutron orbitals, was discussed.
This is, however, a considerably broader bump corresponding
to an alignment in a larger frequency range which is not
seen as any well defined alignment in Fig. 18. For the TSD3
configuration, no specific alignment is seen in Fig. 18 and no
crossing between orbitals is observed in Fig. 15 which could
give rise to such an alignment.

The conclusion from the present analysis of the alignments
would thus be that the TSD2 configuration, i.e., the γ < 0
configuration, which is the preferred assignment for the yrast
TSD band in 158Er. This is also the preferred configuration
when comparing the transitional quadrupole moment Qt [21],
even though the value of Qt for the TSD3 configuration
is not much different. However, if a TSD3 configuration is
assigned, it appears to correspond to an unrealistic increase of
the spin values in the band compared with the values which
appear to be most realistic from an experimental point of
view [17]. The assignment of a negative γ configuration is in
disagreement with Ref. [22] where it is concluded that a TSD2
minimum would be unstable towards the TSD1 minimum in
the tilted-axis degree of freedom. This conclusion, however,
requires that the TSD1 minimum be (considerably) lower in
energy than the TSD2 minimum, which is the outcome of
the CNS calculations as well as the calculations of Ref. [22].
However, the relative energies of the three TSD minima are
clearly uncertain within at least ±1 MeV. Thus, considering
only the calculated energies, it could be a configuration in any
of the three TSD minima which should be assigned to observed
yrast TSD band in 158Er. One may also note that, with present
interpretations, there is no strong relation between the TSD
bands in 158Er and 168Hf.

VII. CONCLUSIONS

In this study, we have made some modifications when solv-
ing the Hamiltonian in the configuration-dependent cranked
Nilsson-Strutinsky formalism in order to test the accuracy
of some approximations. The nucleus 168Hf is used as a test
case and the observed highest-spin bands in this nucleus are
analyzed.

An important feature of the CNS formalism is that the
off-shell matrix elements in the rotating harmonic oscillator
basis are neglected in order to make it possible to fix
configurations in more detail. For the yrast states, it is,
however, straightforward to include all couplings and compare
with the approximate CNS results. We conclude that the
neglect of the off-shell elements of the Hamiltonian matrix is

acceptable; i.e., for the deformations and rotational frequencies
which are reached in 168Hf, it only leads to small errors which
are essentially negligible compared with other uncertainties.
This is also true for the cutoff error due to the limited number of
oscillator shells in the basis, where our calculations show that
if more than nine shells (Nmax > 8) are included, both the total
discrete energy and the total smoothed energy decrease, which
means that the shell energy and thus also the total rotational
energy is almost unchanged.

The total energy was minimized in the full hexadecapole
space indicating that, for axially symmetric shape, it is
generally sufficient to include only the standard ε40 degree
of freedom, which does not break the axial symmetry. On the
other hand, at large triaxial deformation, it appears necessary
to minimize the energy in all three hexadecapole deformation
parameters (ε40, ε42, ε44). The study of the deformation space
shows that, in 168Hf, the energy of the axially symmetric bands
with normal deformation could as well be minimized in the
restricted deformation space (ε2, γ, ε4), while the energy of
the TSD bands should be minimized in the deformation space
(ε2, γ, ε40, ε42, ε44). We used these results and studied the
structure of the experimental bands 1 and 3, band ED, and
bands TSD1 and TSD2 in 168Hf.

In our studies of the high-spin bands of 168Hf, the general
conclusions are the same as in Refs. [15,16] but still with
some important differences. Thus, we conclude that the
crossing observed around I = 40 in the normal deformed
bands are created when a particle is excited to the down-sloping
1/2[541] orbital but rather from the 7/2[523] orbital and
not from the 9/2[514] orbital suggested in Ref. [16]. The
different conclusions are understood from the fact that the
number of particles is preserved in the unpaired formalism,
while quasiparticle excitations with a fixed Fermi energy [16]
could lead to significant changes in the number of particles.
More important is, however, our suggestion that the ED
band is built with two holes in the extruder h11/2 orbitals.
With such an excitation, the configuration is clearly different
from that of the normal deformed bands, with a calculated
transitional quadrupole moment in closer agreement with
experiment. Because this configuration is not calculated as
yrast, it is straightforward to analyze it only in formalisms
where excited configurations with the same quantum numbers
can be distinguished, e.g., by the number of particles (or
holes) in high-j orbitals. For the TSD1 and TSD2 bands,
we conclude that they are formed in a strongly deformed
triaxial minimum with several particles excited to high-j
intruder orbitals. This agrees with the assignment in Ref. [15],
concerning TSD1. However, while only the high-j particles
were considered in that reference, the holes in the extruder
orbitals are as important according to our analyses, where it
is mainly the neutron N = 4 holes which induce the triaxial
shape.

As a background for the study of the Hf bands, we did
also investigate the filling of the orbitals of the TSD bands in
Lu isotopes. These bands are naturally understood as having a
proton configuration with one i13/2 orbital occupied, compared
with two such orbitals filled in the larger deformation TSD
bands of 168Hf. The neutron configurations in the N = 90–96
range are characterized by a successive filling of down-sloping
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orbitals in a region of low level-density which is created below
four extruder orbitals emerging from the h11/2 and N = 4
shells; see Figs. 1 and 3.

The relative alignments ieff [37] between the TSD bands
in the different nuclei were analyzed, where the general
features are understood from the contribution of the different
orbitals which become occupied. Especially, it was concluded
that the specific features of the yrast ultrahigh-spin band in
158Er are best understood if this band is built in the TSD

minimum with γ < 0, i.e., for rotation around the intermediate
axis.
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