686 research outputs found
On a class of distributions stable under random summation
We investigate a family of distributions having a property of
stability-under-addition, provided that the number of added-up random
variables in the random sum is also a random variable. We call the
corresponding property a \,-stability and investigate the situation with
the semigroup generated by the generating function of is commutative.
Using results from the theory of iterations of analytic functions, we show that
the characteristic function of such a -stable distribution can be
represented in terms of Chebyshev polynomials, and for the case of -normal
distribution, the resulting characteristic function corresponds to the
hyperbolic secant distribution. We discuss some specific properties of the
class and present particular examples.Comment: 12 pages, 1 figur
Evolutionary multi-stage financial scenario tree generation
Multi-stage financial decision optimization under uncertainty depends on a
careful numerical approximation of the underlying stochastic process, which
describes the future returns of the selected assets or asset categories.
Various approaches towards an optimal generation of discrete-time,
discrete-state approximations (represented as scenario trees) have been
suggested in the literature. In this paper, a new evolutionary algorithm to
create scenario trees for multi-stage financial optimization models will be
presented. Numerical results and implementation details conclude the paper
New distance measures for classifying X-ray astronomy data into stellar classes
The classification of the X-ray sources into classes (such as extragalactic
sources, background stars, ...) is an essential task in astronomy. Typically,
one of the classes corresponds to extragalactic radiation, whose photon
emission behaviour is well characterized by a homogeneous Poisson process. We
propose to use normalized versions of the Wasserstein and Zolotarev distances
to quantify the deviation of the distribution of photon interarrival times from
the exponential class. Our main motivation is the analysis of a massive dataset
from X-ray astronomy obtained by the Chandra Orion Ultradeep Project (COUP).
This project yielded a large catalog of 1616 X-ray cosmic sources in the Orion
Nebula region, with their series of photon arrival times and associated
energies. We consider the plug-in estimators of these metrics, determine their
asymptotic distributions, and illustrate their finite-sample performance with a
Monte Carlo study. We estimate these metrics for each COUP source from three
different classes. We conclude that our proposal provides a striking amount of
information on the nature of the photon emitting sources. Further, these
variables have the ability to identify X-ray sources wrongly catalogued before.
As an appealing conclusion, we show that some sources, previously classified as
extragalactic emissions, have a much higher probability of being young stars in
Orion Nebula.Comment: 29 page
Structural results on convexity relative to cost functions
Mass transportation problems appear in various areas of mathematics, their
solutions involving cost convex potentials. Fenchel duality also represents an
important concept for a wide variety of optimization problems, both from the
theoretical and the computational viewpoints. We drew a parallel to the
classical theory of convex functions by investigating the cost convexity and
its connections with the usual convexity. We give a generalization of Jensen's
inequality for cost convex functions.Comment: 10 page
Statistical Consequences of Devroye Inequality for Processes. Applications to a Class of Non-Uniformly Hyperbolic Dynamical Systems
In this paper, we apply Devroye inequality to study various statistical
estimators and fluctuations of observables for processes. Most of these
observables are suggested by dynamical systems. These applications concern the
co-variance function, the integrated periodogram, the correlation dimension,
the kernel density estimator, the speed of convergence of empirical measure,
the shadowing property and the almost-sure central limit theorem. We proved in
\cite{CCS} that Devroye inequality holds for a class of non-uniformly
hyperbolic dynamical systems introduced in \cite{young}. In the second appendix
we prove that, if the decay of correlations holds with a common rate for all
pairs of functions, then it holds uniformly in the function spaces. In the last
appendix we prove that for the subclass of one-dimensional systems studied in
\cite{young} the density of the absolutely continuous invariant measure belongs
to a Besov space.Comment: 33 pages; companion of the paper math.DS/0412166; corrected version;
to appear in Nonlinearit
Monge Distance between Quantum States
We define a metric in the space of quantum states taking the Monge distance
between corresponding Husimi distributions (Q--functions). This quantity
fulfills the axioms of a metric and satisfies the following semiclassical
property: the distance between two coherent states is equal to the Euclidean
distance between corresponding points in the classical phase space. We compute
analytically distances between certain states (coherent, squeezed, Fock and
thermal) and discuss a scheme for numerical computation of Monge distance for
two arbitrary quantum states.Comment: 9 pages in LaTex - RevTex + 2 figures in ps. submitted to Phys. Rev.
Geometrical Insights for Implicit Generative Modeling
Learning algorithms for implicit generative models can optimize a variety of
criteria that measure how the data distribution differs from the implicit model
distribution, including the Wasserstein distance, the Energy distance, and the
Maximum Mean Discrepancy criterion. A careful look at the geometries induced by
these distances on the space of probability measures reveals interesting
differences. In particular, we can establish surprising approximate global
convergence guarantees for the -Wasserstein distance,even when the
parametric generator has a nonconvex parametrization.Comment: this version fixes a typo in a definitio
The structures of Hausdorff metric in non-Archimedean spaces
For non-Archimedean spaces and let and be the
ballean of (the family of the balls in ), the space of mappings from
to and the space of mappings from the ballen of to
respectively. By studying explicitly the Hausdorff metric structures related to
these spaces, we construct several families of new metric structures (e.g., ) on the corresponding spaces, and study their convergence,
structural relation, law of variation in the variable including
some normed algebra structure. To some extent, the class is a counterpart of the usual Levy-Prohorov metric in the
probability measure spaces, but it behaves very differently, and is interesting
in itself. Moreover, when is compact and is a complete
non-Archimedean field, we construct and study a Dudly type metric of the space
of valued measures on Comment: 43 pages; this is the final version. Thanks to the anonymous
referee's helpful comments, the original Theorem 2.10 is removed, Proposition
2.10 is stated now in a stronger form, the abstact is rewritten, the
Monna-Springer is used in Section 5, and Theorem 5.2 is written in a more
general for
Brownian markets
Financial market dynamics is rigorously studied via the exact generalized
Langevin equation. Assuming market Brownian self-similarity, the market return
rate memory and autocorrelation functions are derived, which exhibit an
oscillatory-decaying behavior with a long-time tail, similar to empirical
observations. Individual stocks are also described via the generalized Langevin
equation. They are classified by their relation to the market memory as heavy,
neutral and light stocks, possessing different kinds of autocorrelation
functions
Portfolio selection problems in practice: a comparison between linear and quadratic optimization models
Several portfolio selection models take into account practical limitations on
the number of assets to include and on their weights in the portfolio. We
present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset
Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional
Value-at-Risk (LACVaR) models, where the assets are limited with the
introduction of quantity and cardinality constraints. We propose a completely
new approach for solving the LAM model, based on reformulation as a Standard
Quadratic Program and on some recent theoretical results. With this approach we
obtain optimal solutions both for some well-known financial data sets used by
several other authors, and for some unsolved large size portfolio problems. We
also test our method on five new data sets involving real-world capital market
indices from major stock markets. Our computational experience shows that,
rather unexpectedly, it is easier to solve the quadratic LAM model with our
algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of
the best commercial codes for mixed integer linear programming (MILP) problems.
Finally, on the new data sets we have also compared, using out-of-sample
analysis, the performance of the portfolios obtained by the Limited Asset
models with the performance provided by the unconstrained models and with that
of the official capital market indices
- …
