8,355 research outputs found

    Unparticle Searches Through Compton Scattering

    Full text link
    We investigate the effects of unparticles on Compton scattering, e gamma -> e gamma based on a future e^+e^- linear collider such as the CLIC. For different polarization configurations, we calculate the lower limits of the unparticle energy scale Lambda_U for a discovery reach at the center of mass energies sqrt(s)=0.5 TeV- 3 TeV. It is shown that, especially, for smaller values of the mass dimension d, (1 <d <1.3), and for high energies and luminosities of the collider these bounds are very significant. As a stringent limit, we find Lambda_U>80 TeV for d<1.3 at sqrt(s)=3 TeV, and 1 ab^(-1) integrated luminosity per year, which is comparable with the limits calculated from other low and high energy physics implications.Comment: Table 1 and 2 have been combined as Table 1, references updated, minor typos have been correcte

    Constraints on Astro-unparticle Physics from SN 1987A

    Full text link
    SN 1987A observations have been used to place constraints on the interactions between standard model particles and unparticles. In this study we calculate the energy loss from the supernovae core through scalar, pseudo scalar, vector, pseudo vector unparticle emission from nuclear bremsstrahlung for degenerate nuclear matter interacting through one pion exchange. In order to examine the constraints on dU=1d_{\cal U}=1 we considered the emission of scalar, pseudo scalar, vector, pseudo vector and tensor through the pair annihilation process e+eUγe^+e^-\to {\cal U} \gamma . In addition we have re-examined other pair annihilation processes. The most stringent bounds on the dimensionless coupling constants for dU=1d_{\cal U} =1 and ΛU=mZ\Lambda_{\cal U}= m_Z are obtained from nuclear bremsstrahlung process for the pseudo scalar and pseudo-vector couplings λ0,1P4×1011\bigl|\lambda^{\cal P}_{0,1}\bigr|\leq 4\times 10^{-11} and for tensor interaction, the best limit on dimensionless coupling is obtained from e+eUγe^+ e^-\to {\cal U} \gamma and we get λT6×106\bigl|\lambda^{\cal T}\bigr| \leq 6\times 10^{-6}.Comment: 12 pages, 2 postscript figure

    Temperature and field dependence of the phase separation, structure, and magnetic ordering in La1x_{1-x}Cax_xMnO3_3, (x=0.47x=0.47, 0.50, and 0.53)

    Full text link
    Neutron powder diffraction measurements, combined with magnetization and resistivity data, have been carried out in the doped perovskite La1x_{1-x}Cax_xMnO3_3 (x=0.47x=0.47, 0.50, and 0.53) to elucidate the structural, magnetic, and electronic properties of the system around the composition corresponding to an equal number of Mn3+ and Mn4+. At room temperature all three samples are paramagnetic and single phase, with crystallographic symmetry Pnma. The samples then all become ferromagnetic (FM) at TC265T_C\approx 265 K. At 230\sim 230 K, however, a second distinct crystallographic phase (denoted A-II) begins to form. Initially the intrinsic widths of the peaks are quite large, but they narrow as the temperature decreases and the phase fraction increases, indicating microscopic coexistence. The fraction of the sample that exhibits the A-II phase increases with decreasing temperature and also increases with increasing Ca doping, but the transition never goes to completion to the lowest temperatures measured (5 K) and the two phases therefore coexist in this temperature-composition regime. Phase A-II orders antiferromagnetically (AFM) below a N\'{e}el temperature TN160T_N \approx 160 K, with the CE-type magnetic structure. Resistivity measurements show that this phase is a conductor, while the CE phase is insulating. Application of magnetic fields up to 9 T progressively inhibits the formation of the A-II phase, but this suppression is path dependent, being much stronger for example if the sample is field-cooled compared to zero-field cooling and then applying the field. The H-T phase diagram obtained from the diffraction measurements is in good agreement with the results of magnetization and resistivity.Comment: 12 pages, 3 tables, 11 figure

    Pion interferometry in Au+Au collisions at sNN\sqrt{\mathrm{s}_{_{\mathrm{NN}}}} = 200 GeV

    Get PDF
    We present a systematic analysis of two-pion interferometry in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV using the STAR detector at RHIC. We extract the HBT radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianess of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast wave parameterizations. The expansion of the source and its relation with the initial energy density distribution is studied.Comment: 21 pages, 30 figures. As published in Physics Review

    Correlations in STAR: interferometry and event structure

    Full text link
    STAR observes a complex picture of RHIC collisions where correlation effects of different origins -- initial state geometry, semi-hard scattering, hadronization, as well as final state interactions such as quantum intensity interference -- coexist. Presenting the measurements of flow, mini-jet deformation, modified hadronization, and the Hanbury Brown and Twiss effect, we trace the history of the system from the initial to the final state. The resulting picture is discussed in the context of identifying the relevant degrees of freedom and the likely equilibration mechanism.Comment: 8 pages, 6 figures, plenary talk at the 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, to appear in Journal of Physics G (http://www.iop.org

    An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement

    Full text link
    The QCD phase diagram lies at the heart of what the RHIC Physics Program is all about. While RHIC has been operating very successfully at or close to its maximum energy for almost a decade, it has become clear that this collider can also be operated at lower energies down to 5 GeV without extensive upgrades. An exploration of the full region of beam energies available at the RHIC facility is imperative. The STAR detector, due to its large uniform acceptance and excellent particle identification capabilities, is uniquely positioned to carry out this program in depth and detail. The first exploratory beam energy scan (BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades, most importantly a full barrel Time of Flight detector, are now completed which add new capabilities important for the interesting physics at BES energies. In this document we discuss current proposed measurements, with estimations of the accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure

    Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV

    Get PDF
    We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.Comment: 7 pages, 4 figures + 1 tabl

    Spin alignment measurements of the K0(892)K^{*0}(892) and ϕ(1020)\phi(1020) vector mesons at RHIC

    Get PDF
    We present the first spin alignment measurements for the K0(892)K^{*0}(892) and ϕ(1020)\phi(1020) vector mesons produced at mid-rapidity with transverse momenta up to 5 GeV/c at sNN\sqrt{s_{NN}} = 200 GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are ρ00\rho_{00} = 0.32 ±\pm 0.04 (stat) ±\pm 0.09 (syst) for the K0K^{*0} (0.8<pT<5.00.8<p_T<5.0 GeV/c) and ρ00\rho_{00} = 0.34 ±\pm 0.02 (stat) ±\pm 0.03 (syst) for the ϕ\phi (0.4<pT<5.00.4<p_T<5.0 GeV/c), and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector meson spins. Spin alignments for K0K^{*0} and ϕ\phi in Au+Au collisions were also measured with respect to the particle's production plane. The ϕ\phi result, ρ00\rho_{00} = 0.41 ±\pm 0.02 (stat) ±\pm 0.04 (syst), is consistent with that in p+p collisions, ρ00\rho_{00} = 0.39 ±\pm 0.03 (stat) ±\pm 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.Comment: 7 pages, 4 figures. fig.1 updated; one more reference added, one typo corrected, published in PRC.77.06190

    System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider

    Get PDF
    We measure directed flow (ν_1) for charged particles in Au+Au and Cu+Cu collisions at √S_(NN)=200 and 62.4 GeV, as a function of pseudorapidity (η), transverse momentum (p_t), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to ν_1 in different collision systems, and investigate possible explanations for the observed sign change in ν_1(p_t)

    Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?

    Full text link
    Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice. While graphite has non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small monopolar electrostatic contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation contributions are found to be very similar in both materials and to almost completely cancel out by the Pauli repulsions at physically relevant interlayer distances resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities the hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C coefficient in the hexagonal bulk form resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar predicting practically the same interlayer distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table
    corecore