49,723 research outputs found
Current suppression in a double-island single-electron transistor for detection of degenerate charge configurations of a floating double-dot
We have investigated a double-island single-electron transistor (DISET)
coupled to a floating metal double-dot (DD). Low-temperature transport
measurements were used to map out the charge configurations of both the DISET
and the DD. A suppression of the current through the DISET was observed
whenever the charge configurations of the DISET and the DD were energetically
co-degenerate. This effect was used to distinguish between degenerate and
non-degenerate charge configurations of the double-dot. We also show that this
detection scheme reduces the susceptibility of the DISET to interference from
random charge noise.Comment: 3 pages, 3 figures, to appear in Appl. Phys. Let
Electric field induced charge noise in doped silicon: ionization of phosphorus donors
We report low frequency charge noise measurement on silicon substrates with
different phosphorus doping densities. The measurements are performed with
aluminum single electron transistors (SETs) at millikelvin temperatures where
the substrates are in the insulating regime. By measuring the SET Coulomb
oscillations, we find a gate voltage dependent charge noise on the more heavily
doped substrate. This charge noise, which is seen to have a 1/f spectrum, is
attributed to the electric field induced tunneling of electrons from their
phosphorus donor potentials.Comment: 4 page, 3 figure
Power Spectrum Correlations Induced by Non-Linear Clustering
Gravitational clustering is an intrinsically non-linear process that
generates significant non-Gaussian signatures in the density field. We consider
how these affect power spectrum determinations from galaxy and weak-lensing
surveys. Non-Gaussian effects not only increase the individual error bars
compared to the Gaussian case but, most importantly, lead to non-trivial
cross-correlations between different band-powers. We calculate the
power-spectrum covariance matrix in non-linear perturbation theory (weakly
non-linear regime), in the hierarchical model (strongly non-linear regime), and
from numerical simulations in real and redshift space. We discuss the impact of
these results on parameter estimation from power spectrum measurements and
their dependence on the size of the survey and the choice of band-powers. We
show that the non-Gaussian terms in the covariance matrix become dominant for
scales smaller than the non-linear scale, depending somewhat on power
normalization. Furthermore, we find that cross-correlations mostly deteriorate
the determination of the amplitude of a rescaled power spectrum, whereas its
shape is less affected. In weak lensing surveys the projection tends to reduce
the importance of non-Gaussian effects. Even so, for background galaxies at
redshift z=1, the non-Gaussian contribution rises significantly around l=1000,
and could become comparable to the Gaussian terms depending upon the power
spectrum normalization and cosmology. The projection has another interesting
effect: the ratio between non-Gaussian and Gaussian contributions saturates and
can even decrease at small enough angular scales if the power spectrum of the
3D field falls faster than 1/k^2.Comment: 34 pages, 15 figures. Revised version, includes a clearer explanation
of why the hierarchical ansatz does not provide a good model of the
covariance matrix in the non-linear regime, and new constraints on the
amplitudes Ra and Rb for general 4-pt function configurations in the
non-linear regim
Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit
Volumes of sub-wavelength electromagnetic elements can act like homogeneous
materials: metamaterials. In analogy, sheets of optical elements such as prisms
can act ray-optically like homogeneous sheet materials. In this sense, such
sheets can be considered to be metamaterials for light rays (METATOYs).
METATOYs realize new and unusual transformations of the directions of
transmitted light rays. We study here, in the ray-optics and scalar-wave
limits, the wave-optical analog of such transformations, and we show that such
an analog does not always exist. Perhaps, this is the reason why many of the
ray-optical possibilities offered by METATOYs have never before been
considered.Comment: 10 pages, 3 figures, references update
Mass inflation in a D dimensional Reissner-Nordstrom black hole: a hierarchy of particle accelerators ?
We study the geometry inside the event horizon of perturbed D dimensional
Reissner-Nordstrom-(A)dS type black holes showing that, similarly to the four
dimensional case, mass inflation also occurs for D>4. First, using the
homogeneous approximation, we show that an increase of the number of spatial
dimensions contributes to a steeper variation of the metric coefficients with
the areal radius and that the phenomenon is insensitive to the cosmological
constant in leading order. Then, using the code reported in arXiv:0904.2669
[gr-qc] adapted to D dimensions, we perform fully non-linear numerical
simulations. We perturb the black hole with a compact pulse adapting the pulse
amplitude such that the relative variation of the black hole mass is the same
in all dimensions, and determine how the black hole interior evolves under the
perturbation. We qualitatively confirm that the phenomenon is similar to four
dimensions as well as the behaviour observed in the homogeneous approximation.
We speculate about the formation of black holes inside black holes triggered by
mass inflation, and about possible consequences of this scenario.Comment: 8 pages, 6 figure
Viscous compressible flow about blunt bodies using a numerically generated orthogonal coordinate system
A numerical solution to the Navier-Stokes equations was obtained for blunt axisymmetric entry bodies of arbitrary shape in supersonic flow. These equations are solved on a finite difference mesh obtained from a simple numerical technique which generates orthogonal coordinates between arbitrary boundaries. The governing equations are solved in time dependent form using Stetter's improved stability three step predictor corrector method. For the present application, the metric coefficients were obtained numerically using fourth order accurate, finite difference relations and proved to be totally reliable for the highly stretched mesh used to resolve the thin viscous boundary layer. Solutions are obtained for a range of blunt body nose shapes including concavities
MECHANICAL DAMPING SYSTEM FOR STRUCTURES
A mechanical damping system for a structure is provided. The mechanical damping system comprises a tubular impact frame secured to the structure. A support frame is secured to the structure with the support frame spaced from the impact frame. An elongated member is provided having a first end and a second end. The first end is secured within the support frame and the second end is free from connection and extends into the impact frame. At least one impact mass is secured to the second end of the elongated member, the impact mass movable within and contactable with the impact frame
Recommended from our members
Knocking out barriers to engineered cell activity.
CRISPR-Cas9 gene-edited T cells show safety and long-term engraftment in human
- …
