2,650 research outputs found
Self-Energy Correction to the Bound-Electron g Factor of P States
The radiative self-energy correction to the bound-electron g factor of 2P_1/2
and 2P_3/2 states in one-electron ions is evaluated to order alpha (Z alpha)^2.
The contribution of high-energy virtual photons is treated by means of an
effective Dirac equation, and the result is verified by an approach based on
long-wavelength quantum electrodynamics. The contribution of low-energy virtual
photons is calculated both in the velocity and in the length gauge and gauge
invariance is verified explicitly. The results compare favorably to recently
available numerical data for hydrogenlike systems with low nuclear charge
numbers.Comment: 8 pages, RevTe
Risk factors for acute exacerbations of COPD in a primary care population: A retrospective observational cohort study
Objectives: To evaluate risk factors associated with exacerbation frequency in primary care. Information on exacerbations of chronic obstructive pulmonary disease (COPD) has mainly been generated by secondary care-based clinical cohorts. Design: Retrospective observational cohort study. Setting: Electronic medical records database (England and Wales). Participants: 58 589 patients with COPD aged ≥40 years with COPD diagnosis recorded between 1 April 2009 and 30 September 2012, and with at least 365 days of follow-up before and after the COPD diagnosis, were identified in the Clinical Practice Research Datalink. Mean age: 69 years; 47% female; mean forced expiratory volume in 1s 60% predicted. Outcome measures: Data on moderate or severe exacerbation episodes defined by diagnosis and/or medication codes 12 months following cohort entry were retrieved, together with demographic and clinical characteristics. Associations between patient characteristics and odds of having none versus one, none versus frequent (≥2) and one versus frequent exacerbations over 12 months follow-up were evaluated using multivariate logistic regression models. Results: During follow-up, 23% of patients had evidence of frequent moderate-to-severe COPD exacerbations (24% one; 53% none). Independent predictors of increased odds of having exacerbations during the follow-up, either frequent episodes or one episode, included prior exacerbations, increasing dyspnoea score, increasing grade of airflow limitation, females and prior or current history of several comorbidities (eg, asthma, depression, anxiety, heart failure and cancer). Conclusions: Primary care-managed patients with COPD at the highest risk of exacerbations can be identified by exploring medical history for the presence of prior exacerbations, greater COPD disease severity and co-occurrence of other medical conditions
Shape selection of surface-bound helical filaments: biopolymers on curved membranes
Motivated to understand the behavior of biological filaments interacting with
membranes of various types, we study a theoretical model for the shape and
thermodynamics of intrinsically-helical filaments bound to curved membranes. We
show filament-surface interactions lead to a host of non-uniform shape
equilibria, in which filaments progressively unwind from their native twist
with increasing surface interaction and surface curvature, ultimately adopting
uniform-contact curved shapes. The latter effect is due to non-linear coupling
between elastic twist and bending of filaments on anisotropically-curved
surfaces, such as the cylindrical surfaces considered here. Via a combination
of numerical solutions and asymptotic analysis of shape equilibria we show that
filament conformations are critically sensitive to the surface curvature in
both the strong- and weak-binding limits. These results suggest that local
structure of membrane-bound chiral filaments is generically sensitive to the
curvature-radius of the surface to which it is bound, even when that radius is
much larger than the filament intrinsic pitch. Typical values of elastic
parameters and interaction energies for several prokaryotic and eukaryotic
filaments indicate that biopolymers are inherently very sensitive to the
coupling between twist, interactions and geometry and that this could be
exploited for regulation of a variety of processes such as the targeted
exertion of forces, signaling and self-assembly in response to geometric cues
including the local mean and Gaussian curvatures
Observation of Spin Flips with a Single Trapped Proton
Radio-frequency induced spin transitions of one individual proton are
observed for the first time. The spin quantum jumps are detected via the
continuous Stern-Gerlach effect, which is used in an experiment with a single
proton stored in a cryogenic Penning trap. This is an important milestone
towards a direct high-precision measurement of the magnetic moment of the
proton and a new test of the matter-antimatter symmetry in the baryon sector
SAMplus: adaptive optics at optical wavelengths for SOAR
Adaptive Optics (AO) is an innovative technique that substantially improves
the optical performance of ground-based telescopes. The SOAR Adaptive Module
(SAM) is a laser-assisted AO instrument, designed to compensate ground-layer
atmospheric turbulence in near-IR and visible wavelengths over a large Field of
View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is
focused on enhancing its performance in visible wavelengths and increasing the
instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500
nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40
arcsec, and with the upgrade we expect to deliver images with a FWHM of
arcsec -- up to 0.23 arcsec FWHM PSF under good seeing
conditions. Such capabilities will be fully integrated with the latest SAM
instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne
Instrumentation for Astronomy VII; SPIEastro18
Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap
We present an experimental concept and setup for laser-microwave
double-resonance spectroscopy of highly charged ions in a Penning trap. Such
spectroscopy allows a highly precise measurement of the Zeeman splittings of
fine- and hyperfine-structure levels due the magnetic field of the trap. We
have performed detailed calculations of the Zeeman effect in the framework of
quantum electrodynamics of bound states as present in such highly charged ions.
We find that apart from the linear Zeeman effect, second- and third-order
Zeeman effects also contribute to the splittings on a level of 10^-4 and 10^-8,
respectively, and hence are accessible to a determination within the achievable
spectroscopic resolution of the ARTEMIS experiment currently in preparation
3D tomography of cells in micro-channels
We combine confocal imaging, microfluidics and image analysis to record
3D-images of cells in flow. This enables us to recover the full 3D
representation of several hundred living cells per minute. Whereas 3D confocal
imaging has thus far been limited to steady specimen, we overcome this
restriction and present a method to access the 3D shape of moving objects. The
key of our principle is a tilted arrangement of the micro-channel with respect
to the focal plane of the microscope. This forces cells to traverse the focal
plane in an inclined manner. As a consequence, individual layers of passing
cells are recorded which can then be assembled to obtain the volumetric
representation. The full 3D information allows for a detailed comparisons with
theoretical and numerical predictions unfeasible with e.g.\ 2D imaging. Our
technique is exemplified by studying flowing red blood cells in a micro-channel
reflecting the conditions prevailing in the microvasculature. We observe two
very different types of shapes: `croissants' and `slippers'. Additionally, we
perform 3D numerical simulations of our experiment to confirm the observations.
Since 3D confocal imaging of cells in flow has not yet been realized, we see
high potential in the field of flow cytometry where cell classification thus
far mostly relies on 1D scattering and fluorescence signals
- …
