1,621 research outputs found

    Sagnac Interferometer as a Speed-Meter-Type, Quantum-Nondemolition Gravitational-Wave Detector

    Full text link
    According to quantum measurement theory, "speed meters" -- devices that measure the momentum, or speed, of free test masses -- are immune to the standard quantum limit (SQL). It is shown that a Sagnac-interferometer gravitational-wave detector is a speed meter and therefore in principle it can beat the SQL by large amounts over a wide band of frequencies. It is shown, further, that, when one ignores optical losses, a signal-recycled Sagnac interferometer with Fabry-Perot arm cavities has precisely the same performance, for the same circulating light power, as the Michelson speed-meter interferometer recently invented and studied by P. Purdue and the author. The influence of optical losses is not studied, but it is plausible that they be fairly unimportant for the Sagnac, as for other speed meters. With squeezed vacuum (squeeze factor e2R=0.1e^{-2R} = 0.1) injected into its dark port, the recycled Sagnac can beat the SQL by a factor 103 \sqrt{10} \simeq 3 over the frequency band 10 {\rm Hz} \alt f \alt 150 {\rm Hz} using the same circulating power Ic820I_c\sim 820 kW as is used by the (quantum limited) second-generation Advanced LIGO interferometers -- if other noise sources are made sufficiently small. It is concluded that the Sagnac optical configuration, with signal recycling and squeezed-vacuum injection, is an attractive candidate for third-generation interferometric gravitational-wave detectors (LIGO-III and EURO).Comment: 12 pages, 6 figure

    The future of social is personal: the potential of the personal data store

    No full text
    This chapter argues that technical architectures that facilitate the longitudinal, decentralised and individual-centric personal collection and curation of data will be an important, but partial, response to the pressing problem of the autonomy of the data subject, and the asymmetry of power between the subject and large scale service providers/data consumers. Towards framing the scope and role of such Personal Data Stores (PDSes), the legalistic notion of personal data is examined, and it is argued that a more inclusive, intuitive notion expresses more accurately what individuals require in order to preserve their autonomy in a data-driven world of large aggregators. Six challenges towards realising the PDS vision are set out: the requirement to store data for long periods; the difficulties of managing data for individuals; the need to reconsider the regulatory basis for third-party access to data; the need to comply with international data handling standards; the need to integrate privacy-enhancing technologies; and the need to future-proof data gathering against the evolution of social norms. The open experimental PDS platform INDX is introduced and described, as a means of beginning to address at least some of these six challenges

    Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    Get PDF
    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers.Comment: 16 pages, 8 figure

    Circulating resistin levels and risk of multiple myeloma in three prospective cohorts

    Get PDF
    BACKGROUND: Resistin is a polypeptide hormone secreted by adipose tissue. A prior hospital-based case-control study reported serum resistin levels to be inversely associated with risk of multiple myeloma (MM). To date, this association has not been investigated prospectively. METHODS: We measured resistin concentrations for pre-diagnosis peripheral blood samples from 178 MM cases and 358 individually matched controls from three cohorts participating in the MM cohort consortium. RESULTS: In overall analyses, higher resistin levels were weakly associated with reduced MM risk. For men, we observed a statistically significant inverse association between resistin levels and MM (odds ratio, 0.44; 95% confidence interval (CI) 0.24-0.83 and 0.54; 95% CI 0.29-0.99, for the third and fourth quartiles, respectively, vs the lowest quartile; Ptrend=0.03). No association was observed for women. CONCLUSIONS: This study provides the first prospective evidence that low circulating resistin levels may be associated with an increased risk of MM, particularly for men

    Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set

    Get PDF
    Statistical imputation of genotype data is an important technique for analysis of genome-wide association studies (GWAS). We have built a reference dataset to improve imputation accuracy for studies of individuals of primarily European descent using genotype data from the Hap1, Omni1, and Omni2.5 human SNP arrays (Illumina). Our dataset contains 2.5-3.1 million variants for 930 European, 157 Asian, and 162 African/African-American individuals. Imputation accuracy of European data from Hap660 or OmniExpress array content, measured by the proportion of variants imputed with R^2^>0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively, compared to imputation using publicly available data from 1,000 Genomes and International HapMap projects. The improved accuracy with the use of the new dataset could increase the power for GWAS by as much as 8% relative to genotyping all variants. This reference dataset is available to the scientific community through the NCBI dbGaP portal. Future versions will include additional genotype data as well as non-European populations

    The noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization

    Get PDF
    It is shown that photon shot noise and radiation-pressure back-action noise are the sole forms of quantum noise in interferometric gravitational wave detectors that operate near or below the standard quantum limit, if one filters the interferometer output appropriately. No additional noise arises from the test masses' initial quantum state or from reduction of the test-mass state due to measurement of the interferometer output or from the uncertainty principle associated with the test-mass state. Two features of interferometers are central to these conclusions: (i) The interferometer output (the photon number flux N(t) entering the final photodetector) commutes with itself at different times in the Heisenberg Picture, [N(t), N(t')] = 0, and thus can be regarded as classical. (ii) This number flux is linear in the test-mass initial position and momentum operators x_o and p_o, and those operators influence the measured photon flux N(t) in manners that can easily be removed by filtering -- e.g., in most interferometers, by discarding data near the test masses' 1 Hz swinging freqency. The test-mass operators x_o and p_o contained in the unfiltered output N(t) make a nonzero contribution to the commutator [N(t), N(t')]. That contribution is cancelled by a nonzero commutation of the photon shot noise and radiation-pressure noise, which also are contained in N(t). This cancellation of commutators is responsible for the fact that it is possible to derive an interferometer's standard quantum limit from test-mass considerations, and independently from photon-noise considerations. These conclusions are true for a far wider class of measurements than just gravitational-wave interferometers. To elucidate them, this paper presents a series of idealized thought experiments that are free from the complexities of real measuring systems.Comment: Submitted to Physical Review D; Revtex, no figures, prints to 14 pages. Second Revision 1 December 2002: minor rewording for clarity, especially in Sec. II.B.3; new footnote 3 and passages before Eq. (2.35) and at end of Sec. III.B.

    QND measurements for future gravitational-wave detectors

    Full text link
    Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the Standard Quantum Limit significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.Comment: 22 pages, 6 figures, 1 table; In version 2, more tutorial information on quantum noise in GW interferometer and several new items into Reference list were adde

    Large closed queueing networks in semi-Markov environment and its application

    Full text link
    The paper studies closed queueing networks containing a server station and kk client stations. The server station is an infinite server queueing system, and client stations are single-server queueing systems with autonomous service, i.e. every client station serves customers (units) only at random instants generated by a strictly stationary and ergodic sequence of random variables. The total number of units in the network is NN. The expected times between departures in client stations are (Nμj)1(N\mu_j)^{-1}. After a service completion in the server station, a unit is transmitted to the jjth client station with probability pjp_{j} (j=1,2,...,k)(j=1,2,...,k), and being processed in the jjth client station, the unit returns to the server station. The network is assumed to be in a semi-Markov environment. A semi-Markov environment is defined by a finite or countable infinite Markov chain and by sequences of independent and identically distributed random variables. Then the routing probabilities pjp_{j} (j=1,2,...,k)(j=1,2,...,k) and transmission rates (which are expressed via parameters of the network) depend on a Markov state of the environment. The paper studies the queue-length processes in client stations of this network and is aimed to the analysis of performance measures associated with this network. The questions risen in this paper have immediate relation to quality control of complex telecommunication networks, and the obtained results are expected to lead to the solutions to many practical problems of this area of research.Comment: 35 pages, 1 figure, 12pt, accepted: Acta Appl. Mat

    An analysis of a QND speed-meter interferometer

    Full text link
    In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors (e.g. LIGO-III and EURO), one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. This paper describes and analyzes the most straightforward design for a {\it speed meter interferometer} that accomplishes this -- a design (due to Braginsky, Gorodetsky, Khalili and Thorne) that is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and is used to show (in accord with the speed being a Quantum Nondemolition [QND] observable) that {\it in principle} the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies, and can do so without the use of squeezed vacuum or any auxiliary filter cavities at the interferometer's input or output. However, {\it in practice}, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation. This analysis forms a foundation for ongoing attempts to develop a more practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising LIGO-III/EURO interferometer design that entails low laser power.Comment: 12 pages, 5 figures; corrected formula and some values describing power requirement

    A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation

    No full text
    The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R-EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R-EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R-EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR-EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer.This work was supported by the Australian National Health and Medical Research Council project grants [grant numbers 472640, 1024726 to W.G.T. and R.D.H]; and a project grant awarded to R.D.H, funded in Australia by the Captain Courageous Foundation (http://www.captaincourageousfoundation.com). R.D.H also holds an NHMRC senior research fellowship [grant number 1022402]
    corecore