119 research outputs found

    Stress imaging in patients with a Fontan circulation:A systematic review

    Get PDF
    Introduction: The aims of this study were to provide an overview of the cardiac stress response in Fontan patients and of the use, safety and clinical value of stress imaging in Fontan patients. Methods: Studies evaluating cardiac function using stress imaging in Fontan patients published up until 12 December 2021 were included in this review. Results: From 1603 potential studies, 32 studies met the inclusion criteria. In total, stress imaging tests of 728 Fontan patients were included. Cardiac function was most often measured using physical stress (61%), all other studies used dobutamine-induced stress. Stroke volume (SV) increased in most studies (71%), mean SV at rest ranged from 27 mL/m2 to 60 mL/m2 versus 27 mL/m2 to 101 mL/m2 during stress, and increased with an average of 4%. Ejection fraction increased in almost all studies, whereas both end-systolic volume and end-diastolic volume decreased during stress. Higher heart rates were obtained with physical stress (82–180) compared to dobutamine induced stress (73–128). Compared to controls, increases in heartrate and SV were lower and end-diastolic volume decreased abnormally in 75% of reporting studies. No major adverse events were reported. Poorer cardiac stress response was related to decreased exercise capacity and higher risk for long-term (adverse) outcomes in Fontan patients. Discussion: Cardiac stress response in Fontan patients differs from healthy subjects, reflected by lower increases in heart rate, diminished preload and decreased cardiac output, especially during higher levels of exercise. Stress imaging is safe, however the added clinical value needs to be investigated in more detail.</p

    Synthesis and P2Y₂ receptor agonist activities of uridine 5'-phosphonate analogues

    Get PDF
    We explored the influence of modifications of uridine 5’-methylenephosphonate on biological activity at the human P2Y(2) receptor. Key steps in the synthesis of a series of 5-substituted uridine 5’-methylenephosphonates were the reaction of a suitably protected uridine 5’-aldehyde with [(diethoxyphosphinyl)methylidene]triphenylphosphorane, C-5 bromination and a Suzuki–Miyaura coupling. These analogues behaved as selective agonists at the P2Y(2) receptor, with three analogues exhibiting potencies in the submicromolar range. Although maximal activities observed with the phosphonate analogues were much less than observed with UTP, high concentrations of the phosphonates had no effect on the stimulatory effect of UTP. These results suggest that these phosphonates bind to an allosteric site of the P2Y(2) receptor

    Sequence‐based SNP genotyping in durum wheat

    Get PDF
    Summary: Marker development for marker-assisted selection in plant breeding is increasingly based on next-generation sequencing (NGS). However, marker development in crops with highly repetitive, complex genomes is still challenging. Here we applied sequence-based genotyping (SBG), which couples AFLPÂŽ-based complexity reduction to NGS, for de novo single nucleotide polymorphisms (SNP) marker discovery in and genotyping of a biparental durum wheat population. We identified 9983 putative SNPs in 6372 contigs between the two parents and used these SNPs for genotyping 91 recombinant inbred lines (RILs). Excluding redundant information from multiple SNPs per contig, 2606 (41%) markers were used for integration in a pre-existing framework map, resulting in the integration of 2365 markers over 2607 cM. Of the 2606 markers available for mapping, 91% were integrated in the pre-existing map, containing 708 SSRs, DArT markers, and SNPs from CRoPS technology, with a map-size increase of 492 cM (23%). These results demonstrate the high quality of the discovered SNP markers. With this methodology, it was possible to saturate the map at a final marker density of 0.8 cM/marker. Looking at the binned marker distribution (Figure 2), 63 of the 268 10-cM bins contained only SBG markers, showing that these markers are filling in gaps in the framework map. As to the markers that could not be used for mapping, the main reason was the low sequencing coverage used for genotyping. We conclude that SBG is a valuable tool for efficient, high-throughput and high-quality marker discovery and genotyping for complex genomes such as that of durum wheat

    Stress imaging in patients with a Fontan circulation: A systematic review

    Get PDF
    INTRODUCTION: The aims of this study were to provide an overview of the cardiac stress response in Fontan patients and of the use, safety and clinical value of stress imaging in Fontan patients. METHODS: Studies evaluating cardiac function using stress imaging in Fontan patients published up until 12 December 2021 were included in this review. RESULTS: From 1603 potential studies, 32 studies met the inclusion criteria. In total, stress imaging tests of 728 Fontan patients were included. Cardiac function was most often measured using physical stress (61%), all other studies used dobutamine-induced stress. Stroke volume (SV) increased in most studies (71%), mean SV at rest ranged from 27 mL/m 2 to 60 mL/m 2 versus 27 mL/m 2 to 101 mL/m 2 during stress, and increased with an average of 4%. Ejection fraction increased in almost all studies, whereas both end-systolic volume and end-diastolic volume decreased during stress. Higher heart rates were obtained with physical stress (82-180) compared to dobutamine induced stress (73-128). Compared to controls, increases in heartrate and SV were lower and end-diastolic volume decreased abnormally in 75% of reporting studies. No major adverse events were reported. Poorer cardiac stress response was related to decreased exercise capacity and higher risk for long-term (adverse) outcomes in Fontan patients. DISCUSSION: Cardiac stress response in Fontan patients differs from healthy subjects, reflected by lower increases in heart rate, diminished preload and decreased cardiac output, especially during higher levels of exercise. Stress imaging is safe, however the added clinical value needs to be investigated in more detail

    Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores

    Get PDF
    Caterpillar feeding induces direct and indirect defences in brassicaceous plants. This study focused on the role of the octadecanoid pathway in induced indirect defence in Brassica oleracea. The effect of induction by exogenous application of jasmonic acid (JA) on the responses of Brussels sprouts plants and on host-location behaviour of associated parasitoid wasps was studied. Feeding by the biting–chewing herbivores Pieris rapae and Plutella xylostella resulted in significantly increased endogenous levels of JA, a central component in the octadecanoid signalling pathway that mediates induced plant defence. The levels of the intermediate 12-oxophyto-dienoic acid (OPDA) were significantly induced only after P. rapae feeding. Three species of parasitoid wasps, Cotesia glomerata, C. rubecula, and Diadegma semiclausum, differing in host range and host specificity, were tested for their behavioural responses to volatiles from herbivore-induced, JA-induced, and non-induced plants. All three species were attracted to volatiles from JA-induced plants compared with control plants; however, they preferred volatiles from herbivore-induced plants over volatiles from JA-induced plants. Attraction of C. glomerata depended on both timing and dose of JA application. JA-induced plants produced larger quantities of volatiles than herbivore-induced and control plants, indicating that not only quantity, but also quality of the volatile blend is important in the host-location behaviour of the wasps

    Synthesis and P2Y2 receptor agonist activities of uridine 5′-phosphonate analogues

    Get PDF
    We explored the influence of modifications of uridine 5’-methylenephosphonate on biological activity at the human P2Y2 receptor. Key steps in the synthesis of a series of 5-substituted uridine 5’-methylenephosphonates were the reaction of a suitably protected uridine 5’-aldehyde with [(diethoxyphosphinyl)methylidene]triphenylphosphorane, C-5 bromination and a Suzuki–Miyaura coupling. These analogues behaved as selective agonists at the P2Y2 receptor, with three analogues exhibiting potencies in the submicromolar range. Although maximal activities observed with the phosphonate analogues were much less than observed with UTP, high concentrations of the phosphonates had no effect on the stimulatory effect of UTP. These results suggest that these phosphonates bind to an allosteric site of the P2Y2 receptor

    Multidisciplinary Approach to Unravelling the Relative Contribution of Different Oxylipins in Indirect Defense of Arabidopsis thaliana

    Get PDF
    The oxylipin pathway is commonly involved in induced plant defenses, and is the main signal-transduction pathway induced by insect folivory. Herbivory induces the production of several oxylipins, and consequently alters the so-called ‘oxylipin signature’ in the plant. Jasmonic acid (JA), as well as pathway intermediates are known to induce plant defenses. Indirect defense against herbivorous insects comprises the production of herbivore-induced plant volatiles (HIPVs). To unravel the precise oxylipin signal-transduction underlying the production of HIPVs in Arabidopsis thaliana and the resulting attraction of parasitoid wasps, we used a multidisciplinary approach that includes molecular genetics, metabolite analysis, and behavioral analysis. Mutant plants affected in the jasmonate pathway (18:0 and/or 16:0 -oxylipin routes; mutants dde2-2, fad5, opr3) were studied to assess the effects of JA and its oxylipin intermediates 12-oxo-phytodienoate (OPDA) and dinor-OPDA (dnOPDA) on HIPV emission and parasitoid (Diadegma semiclausum) attraction. Interference with the production of the oxylipins JA and OPDA altered the emission of HIPVs, in particular terpenoids and the phenylpropanoid methyl salicylate, which affected parasitoid attraction. Our data show that the herbivore-induced attraction of parasitoid wasps to Arabidopsis plants depends on HIPVs that are induced through the 18:0 oxylipin-derivative JA. Furthermore, our study shows that the 16:0-oxylipin route towards dnOPDA does not play a role in HIPV induction, and that the role of 18:0 derived oxylipin-intermediates, such as OPDA, is either absent or limited

    Comparing induction at an early and late step in signal transduction mediating indirect defence in Brassica oleracea

    Get PDF
    The induction of plant defences involves a sequence of steps along a signal transduction pathway, varying in time course. In this study, the effects of induction of an early and a later step in plant defence signal transduction on plant volatile emission and parasitoid attraction are compared. Ion channel-forming peptides represent a class of inducers that induce an early step in signal transduction. Alamethicin (ALA) is an ion channel-forming peptide mixture from the fungus Trichoderma viride that can induce volatile emission and increase endogenous levels of jasmonic acid (JA) and salicylic acid in plants. ALA was used to induce an early step in the defence response in Brussels sprouts plants, Brassica oleracea var. gemmifera, and to study the effect on volatile emission and on the behavioural response of parasitoids to volatile emission. The parasitoid Cotesia glomerata was attracted to ALA-treated plants in a dose-dependent manner. JA, produced through the octadecanoid pathway, activates a later step in induced plant defence signal transduction, and JA also induces volatiles that are attractive to parasitoids. Treatment with ALA and JA resulted in distinct volatile blends, and both blends differed from the volatile blends emitted by control plants. Even though JA treatment of Brussels sprouts plants resulted in higher levels of volatile emission, ALA-treated plants were as attractive to C. glomerata as JA-treated plants. This demonstrates that on a molar basis, ALA is a 20 times more potent inducer of indirect plant defence than JA, although this hormone has more commonly been used as a chemical inducer of plant defence

    Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects

    Get PDF
    Herbivore-induced plant defences influence the behaviour of insects associated with the plant. For biting–chewing herbivores the octadecanoid signal-transduction pathway has been suggested to play a key role in induced plant defence. To test this hypothesis in our plant—herbivore—parasitoid tritrophic system, we used phenidone, an inhibitor of the enzyme lipoxygenase (LOX), that catalyses the initial step in the octadecanoid pathway. Phenidone treatment of Brussels sprouts plants reduced the accumulation of internal signalling compounds in the octadecanoid pathway downstream of the step catalysed by LOX, i.e. 12-oxo-phytodienoic acid (OPDA) and jasmonic acid. The attraction of Cotesia glomerata parasitoids to host-infested plants was significantly reduced by phenidone treatment. The three herbivores investigated, i.e. the specialists Plutella xylostella, Pieris brassicae and Pieris rapae, showed different oviposition preferences for intact and infested plants, and for two species their preference for either intact or infested plants was shown to be LOX dependent. Our results show that phenidone inhibits the LOX-dependent defence response of the plant and that this inhibition can influence the behaviour of members of the associated insect community

    What Might Have Been Lost

    Get PDF
    This article examines the role of “independent” folk music (indie-folk) in personal identity formation. It builds upon Paul Ricoeur’s theory of narrative identity, which argues (i) that it is through the mechanism of narrative that people build a more or less coherent life-story, and (ii) emphasizes the role of art (most notably literary fiction and poetry) as a mediator in the comprehension and regulation of transitory life experiences. This article aims to apply these insights to studying the role of indie-folk, a narrative art form adhering to the traditional understanding of folk music as a genre rooted in oral tradition, in the construction of personal identity. Studying the daily use of indie-folk songs by audience members through in-depth interviewing, it shows that (i) the reception of indie-folk music results in ritualistic listening behavior aimed at coping with the experience of accelerating social time; (ii) that respondents use indie-folk narratives as resources for reading the self, and (iii) that indie-folk songs provide healing images that are effective in coping with the experience of narrated time as discordant. In arguing for the central role of narrative in identity formation, this article aims to contribute to existing research on music as a “technology of the self” (DeNora). It specifically emphasizes how narrative particles are tools and building blocks in identity construction, a process characterized by the oscillation between narrative coherence and disruption
    • …
    corecore