486 research outputs found
Optimization of operation and test of large size GEM detectors
We describe basic development work aimed at the realization of large (~1000 cm2 active) detectors for the COMPASS experiment, based on the gas electron multiplier technology. Essentially a high-rate forward spectrometer, the experiment requires high accuracy tracking of scattered particles and light detectors, in order not to degrade mass resolution and particle identification. The choice of a double GEM structure with two-coordinate read-out fulfils the above requirements. Systematic studies confirm the required performances, with good safety margins for an operation in harsh environments. We discuss the design problems encountered in the construction of the large devices and the solutions adopted, together with preliminary results obtained with prototypes in the laboratory and in a high intensity beam
Development and test of large size GEM detectors
We discuss the main operating features of GEM detectors, optimized for use as trackers in a high radiation environment. The construction, tests and performances of large prototypes for the COMPASS experiment are also described, as well as the results of an exposure to very high intensity beams. (11 refs)
Further developments of the gas electron multiplier (GEM)
We describe the development and operation of the Gas Electron Multiplier, a thin insulating foil metal-clad on both sides and perforated by a regular pattern of small holes. The mesh can be incorporat ed in the gas volume of an active detector to provide a first amplification channel for electrons, or used as stand alone. We report on the basic properties of GEMs manufactured with different geometr ies and operated in several gas mixtures as well as on their long-term stability after accumulation of charge equivalent to several years of operation in high luminosity experiments. Optimized GEMs re ach gains close to 10000 at safe operating voltages, permitting the detection of ionizing tracks, without other amplifying elements, on a simple printed circuit board (PCB), opening new possibilities for detector design
X-ray emission during the muonic cascade in hydrogen
We report our investigations of X rays emitted during the muonic cascade in
hydrogen employing charge coupled devices as X-ray detectors. The density
dependence of the relative X-ray yields for the muonic hydrogen lines (K_alpha,
K_beta, K_gamma) has been measured at densities between 0.00115 and 0.97 of
liquid hydrogen density. In this density region collisional processes dominate
the cascade down to low energy levels. A comparison with recent calculations is
given in order to demonstrate the influence of Coulomb deexcitation.Comment: 5 pages, Tex, 4 figures, submitted to Physical Review Letter
First results from the CERN Axion Solar Telescope (CAST)
Hypothetical axion-like particles with a two-photon interaction would be
produced in the Sun by the Primakoff process. In a laboratory magnetic field
(``axion helioscope'') they would be transformed into X-rays with energies of a
few keV. Using a decommissioned LHC test magnet, CAST has been running for
about 6 months during 2003. The first results from the analysis of these data
are presented here. No signal above background was observed, implying an upper
limit to the axion-photon coupling < 1.16 10^{-10} GeV^-1 at 95% CL for m_a
<~0.02 eV. This limit is comparable to the limit from stellar energy-loss
arguments and considerably more restrictive than any previous experiment in
this axion mass range.Comment: 4 pages, accepted by PRL. Final version after the referees comment
Solar axion search with the CAST experiment
The CAST (CERN Axion Solar Telescope) experiment is searching for solar
axions by their conversion into photons inside the magnet pipe of an LHC
dipole. The analysis of the data recorded during the first phase of the
experiment with vacuum in the magnet pipes has resulted in the most restrictive
experimental limit on the coupling constant of axions to photons. In the second
phase, CAST is operating with a buffer gas inside the magnet pipes in order to
extent the sensitivity of the experiment to higher axion masses. We will
present the first results on the  data taking as well as the
system upgrades that have been operated in the last year in order to adapt the
experiment for the  data taking. Expected sensitivities on the
coupling constant of axions to photons will be given for the recent  run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc
The CAST Time Projection Chamber
One of the three X-ray detectors of the CAST experiment searching for solar
axions is a Time Projection Chamber (TPC) with a multi-wire proportional
counter (MWPC) as a readout structure. Its design has been optimized to provide
high sensitivity to the detection of the low intensity X-ray signal expected in
the CAST experiment. A low hardware threshold of 0.8 keV is safely set during
normal data taking periods, and the overall efficiency for the detection of
photons coming from conversion of solar axions is 62 %. Shielding has been
installed around the detector, lowering the background level to 4.10 x 10^-5
counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment
the TPC has provided robust and stable operation, thus contributing with a
competitive result to the overall CAST limit on axion-photon coupling and mass.Comment: 19 pages, 11 figures and images, submitted to New Journal of Physic
Construction, test and commissioning of the triple-GEM tracking detector for COMPASS
The Small Area Tracking system of the COMPASS experiment at CERN includes a set of 20 large area, fast position-sensitive Gas Electron Multiplier (GEM) detectors, designed to reliably operate in the harsh radiation environment of the experiment. We describe in detail the design, choice of materials, assembly procedures and quality controls used to manufacture the devices. The test procedure in the laboratory, the performance in test beams and in the initial commissioning phase in the experiment are presented and discussed
Search for low Energy solar Axions with CAST
We have started the development of a detector system, sensitive to single
photons in the eV energy range, to be suitably coupled to one of the CAST
magnet ports. This system should open to CAST a window on possible detection of
low energy Axion Like Particles emitted by the sun. Preliminary tests have
involved a cooled photomultiplier tube coupled to the CAST magnet via a
Galileian telescope and a switched 40 m long optical fiber. This system has
reached the limit background level of the detector alone in ideal conditions,
and two solar tracking runs have been performed with it at CAST. Such a
measurement has never been done before with an axion helioscope. We will
present results from these runs and briefly discuss future detector
developments.Comment: Paper submitted to the proceedings of the "4th Patras Workshop on
  Axions, WIMPs and WISPs", DESY, Hamburg Site - Germany, 18-21 June 2008.
  Author affiliations are reported on the title page of the paper. In version
  2: 1 affiliation change, 3 references adde
Search for solar axion emission from 7Li and D(p,gamma)3He nuclear decays with the CAST gamma-ray calorimeter
We present the results of a search for a high-energy axion emission signal
from 7Li (0.478 MeV) and D(p,gamma)3He (5.5 MeV) nuclear transitions using a
low-background gamma-ray calorimeter during Phase I of the CAST experiment.
These so-called "hadronic axions" could provide a solution to the long-standing
strong-CP problem and can be emitted from the solar core from nuclear M1
transitions. This is the first such search for high-energy pseudoscalar bosons
with couplings to nucleons conducted using a helioscope approach. No excess
signal above background was found.Comment: 20 pages, 8 figures, final version to be published in JCA
- …
