37 research outputs found

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer

    Influence of the production technology on kefir characteristics: Evaluation of microbiological aspects and profiling of phosphopeptides by LC-ESI-QTOF-MS/MS

    No full text
    The influence of production technology, namely, temperature, pH and 2-step fermentation (back-slopping approach), on the microbiological characteristics and on the phosphopeptide profile of kefir obtained with kefir grains was investigated. The growth of yeasts, lactic acid bacteria (LAB) and acetic acetic bacteria (AAB) in both grains and kefir was affected by the incubation temperature and by the use of back-slopping. In particular, at 25 °C the microbiota of kefir grains was mainly composed by LAB and yeasts, while at 18 °C yeasts represented the dominant group in kefir. Back-slopping at 25 °C determined a significant increase of AAB. A comprehensive characterization of potentially bioactive peptides, including caseino-phosphopeptides (CPPs), was performed, for the first time, in kefir obtained with kefir grains, using preliminary enrichment on hydroxyapatite followed by dephosphorylation and analysis by Liquid Chromatography-ElectroSpray Ionization-Quadrupole-Time of Flight-tandem mass spectrometry (LC-ESI-QTOF-MS/MS). As a result, seventy-three phosphopeptides, mostly arising from caseins (79% β-casein, 8% αs1-casein and 9% αs2-casein) and all including from three to five serine residues in their sequences, were identified. Seventy-one of them showed the typical motif “SerP-SerP-SerP-Glu-Glu”, which is crucial for the ability of caseins to bind to minerals. Several peptides were observed, for the first time, from the 1–40 region of β-casein. As for the effect of production technology, phosphopeptide profiles of kefirs obtained at 25 °C and 18 °C were very similar, whereas kefir produced under acidic conditions showed a predominance of smaller peptides, suggesting a higher level of proteolysis. Conversely, kefir obtained through back-slopping at 25 °C contained longer peptides, thus indicating a lower proteolytic activity and a poor reproducibility in the kefir phosphopeptide profile occurring when grains are reused

    Differential expression of receptors for advanced glycation end-products in peritoneal mesothelial cells exposed to glucose degradation products

    No full text
    Autoclaving peritoneal dialysate fluid (PDF) degrades glucose into glucose degradation products (GDPs) that impair peritoneal mesothelial cell functions. While glycation processes leading to formation of advanced glycation end-products (AGE) were viewed commonly as being mediated by glucose present in the PDF, recent evidence indicates that certain GDPs are even more powerful inducers of AGE formation than glucose per se. In the present study, we examined the expression and modulation of AGE receptors on human peritoneal mesothelial cells (HPMC) cultured with GDPs, conventional PDF or PDF with low GDP content. HPMC cultured with GDPs differentially modulated AGE receptors (including RAGE, AGE–R1, AGE–R2 and AGE–R3) expression in a dose-dependent manner. At subtoxic concentrations, GDPs increased RAGE mRNA expression in HPMC. 2-furaldehyde (FurA), methylglyoxal (M-Glx) and 3,4-dideoxy-glucosone-3-Ene (3,4-DGE) increased the expression of AGE–R1 and RAGE, the receptors that are associated with toxic effects. These three GDPs up-regulated the AGE synthesis by cultured HPMC. In parallel, these GDPs also increased the expression of vascular endothelial growth factor (VEGF) in HPMC. PDF with lower GDP content exerted less cytotoxic effect than traditional heat-sterilized PDF. Both PDF preparations up-regulated the protein expression of RAGE and VEGF. However, the up-regulation of VEGF in HPMC following 24-h culture with conventional PDF was higher than values from HPMC cultured with PDF containing low GDP. We have demonstrated, for the first time, that in addition to RAGE, other AGE receptors including AGE–R1, AGE–R2 and AGE–R3 are expressed on HPMC. Different GDPs exert differential regulation on the expression of these receptors on HPMC. The interactions between GDPs and AGE receptors may bear biological relevance to the intraperitoneal homeostasis and membrane integrity
    corecore