247 research outputs found

    The GEOS-3 orbit determination investigation

    Get PDF
    The nature and improvement in satellite orbit determination when precise altimetric height data are used in combination with conventional tracking data was determined. A digital orbit determination program was developed that could singly or jointly use laser ranging, C-band ranging, Doppler range difference, and altimetric height data. Two intervals were selected and used in a preliminary evaluation of the altimeter data. With the data available, it was possible to determine the semimajor axis and eccentricity to within several kilometers, in addition to determining an altimeter height bias. When used jointly with a limited amount of either C-band or laser range data, it was shown that altimeter data can improve the orbit solution

    Comparison of Integrated Radiation Transport Models with TEPC Measurements for the Average Quality Factors in Spaceflights

    Get PDF
    The purpose of this work is to test our theoretical model for the interpretation of radiation data measured in space. During the space missions astronauts are exposed to the complex field of radiation type and kinetic energies from galactic cosmic rays (GCR), trapped protons, and sometimes solar particle events (SPEs). The tissue equivalent proportional counter (TEPC) is a simple time-dependent approach for radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to Microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Q(sub ave)(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Q(sub ave)(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. Lineal energy, y, deviates from LET due to energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. Monte Carlo track structure simulation was employed to obtain the response of a TEPC irradiated with charged particle for an equivalent site diameter of 1 micron of wall-less counter. The calculated data of the energy absorption in the wall-less counter were compiled for various y values for several ion types at various discrete projectile energy levels. For the simulation of TEPC response from the mixed radiation environments inside a spacecraft, such as, Space Shuttle and International Space Station, the complete microdosimetric TEPC response, f( y, E, Z), were calculated with the Monte Carlo theoretical results by using the first order Lagrangian interpolation for a monovariate function at a given y value (y = 0.1 keV/micron 5000 keV/micron) at any projectile energy level (E = 0.01 MeV/u to 50,000 MeV/u) of each specific radiation type (Z = 1 to 28). Because the anomalous response has been observed at large event sizes in the experiment due to the escape of energy out of sensitive volume by delta-rays and the entry of delta-rays from the high-density wall into the low-density gas-volume cavity, Monte Carlo simulation was also made for the response of a walled-TEPC with wall thickness 2 mm and density 1 g/cm(exp 3). The radius of cavity was set to 6.35 mm and a gas density 7.874 x 10(exp -5) g/cm(exp 3). The response of the walled- and the wall-less counters were compared. The average quality factor Q(sub ave)(y) for trapped protons on STS-89 demonstrated the good agreement between the model calculations and flight TEPC data as shown. Using an integrated space radiation model (this includes the transport codes HZETRN and BRYNTRN, the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions of walled-TEPC from Monte-Carlo track simulations, we compared model calculations with walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. The Q(sub ave)(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Q(sub ave)(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Q(sub ave)(y). The GCR values are decreasing with the shield thickness. Our analysis for a proper interpretation of data supports the use of TEPCs for monitoring space radiation environment

    Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring

    Get PDF
    For the proper interpretation of radiation data measured in space, the results of integrated radiation transport models were compared with the tissue equivalent proportional counter (TEPC) measurements. TEPC is a simple, time-dependent approach to radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Qave(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Qave(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. The deviation of y from LET is caused by energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. The response distribution functions of the wall-less and walled TEPCs were calculated from Monte-Carlo track simulations. Using an integrated space radiation model (which includes the transport codes HZETRN and BRYNTRN, and the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions from Monte-Carlo track simulations, we compared model calculations with the walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. Good agreement was found for Qave(y) between the model and measured spectra from past NASA missions. The Qave(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Qave(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Qave(y). The GCR values are decreasing with the shield thickness. Our analysis of the measurements of TEPCs can be used for a proper interpretation of observed data of monitoring the space radiation environment

    GEOS-3 ocean geoid investigation

    Get PDF
    A determination of the fine scale sea surface topography in the GEOS-3 calibration area using the radar altimeter data is presented. Estimates of the north-south and east-west components of the deflections of the vertical as well as values of the geoidal heights were made. Three major stages of processing were used in obtaining the final results. The first two use pass processors; in the final stage, the processor combines all the pass results to compute the final results. The results obtained compare favorably with gravimetrically determined geoids for this calibration area

    Solid State Microdosimetry With Heavy Ions for Space Applications

    Get PDF
    This work provides information pertaining to the performance of Silicon-On-Insulator (SOI) microdosimeters in heavy ion radiation fields. SOI microdosimeters have been previously tested in light ion radiation fields for both space and therapeutic applications, however their response has not been established in high energy, heavy ion radiation fields which are experienced in space. Irradiations were completed at the NASA Space Radiation Laboratory at BNL using 0.6 GeV/u Fe and 1.0 GeV/u Ti ions. Energy deposition and lineal energy spectra were obtained with this device at various depths within a Lucite phantom along the central axis of the beam. The response of which was compared with existing proportional counter data to assess the applicability of SOI microdosimeters to future deployments in space missions

    POSEIDON: An integrated system for analysis and forecast of hydrological, meteorological and surface marine fields in the Mediterranean area

    Get PDF
    The Mediterranean area is characterized by relevant hydrological, meteorological and marine processes developing at horizontal space-scales of the order of 1–100 km. In the recent past, several international programs have been addressed (ALPEX, POEM, MAP, etc.)to “resolving” the dynamics of such motions. Other projects (INTERREG-Flooding, MEDEX, etc.)are at present being developed with special emphasis on catastrophic events with major impact on human society that are, quite often, characterized in their manifestation by processes with the above-mentioned scales of motion. In the dynamical evolution of such events, however, equally important is the dynamics of interaction of the local (and sometimes very damaging)pro cesses with others developing at larger scales of motion. In fact, some of the most catastrophic events in the history of Mediterranean countries are associated with dynamical processes covering all the range of space-time scales from planetary to local. The Prevision Operational System for the mEditerranean basIn and the Defence of the lagOon of veNice (POSEIDON)is an integrated system for the analysis and forecast of hydrological, meteorological, oceanic fields specifically designed and set up in order to bridge the gap between global and local scales of motion, by modeling explicitly the above referred to dynamical processes in the range of scales from Mediterranean to local. The core of POSEIDON consists of a “cascade” of numerical models that, starting from global scale numerical analysisforecast, goes all the way to very local phenomena, like tidal propagation in Venice Lagoon. The large computational load imposed by such operational design requires necessarily parallel computing technology: the first model in the cascade is a parallelised version of BOlogna Limited Area Model (BOLAM)running on a Quadrics 128 processors computer (also known as QBOLAM). POSEIDON, developed in the context of a co-operation between the Italian Agency for New technologies, Energy and Environment (Ente per le Nuove tecnologie, l’Energia e l’Ambiente, ENEA)and the Italian Agency for Environmental Protection and Technical Services (Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici, APAT), has become operational in 2000 and we are presently in the condition of drawing some preliminary conclusions about its performance. In the paper we describe the scientific concepts that were at the basis of the original planning, the structure of the system, its operational cycle and some preliminary scientific and technical evaluations after two years of experimentation
    • …
    corecore