183 research outputs found

    Laser acceleration of protons from near critical density targets for application to radiation therapy

    Full text link
    Laser accelerated protons can be a complimentary source for treatment of oncological diseases to the existing hadron therapy facilities. We demonstrate how the protons, accelerated from near-critical density plasmas by laser pulses having relatively small power, reach energies which may be of interest for medical applications. When an intense laser pulse interacts with near-critical density plasma it makes a channel both in the electron and then in the ion density. The propagation of a laser pulse through such a self-generated channel is connected with the acceleration of electrons in the wake of a laser pulse and generation of strong moving electric and magnetic fields in the propagation channel. Upon exiting the plasma the magnetic field generates a quasi-static electric field that accelerates and collimates ions from a thin filament formed in the propagation channel. Two-dimensional Particle-in-Cell simulations show that a 100 TW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to energy of 250 MeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.Comment: 25 pages, 8 figure

    The reflectivity of relativistic ultra-thin electron layers

    Full text link
    The coherent reflectivity of a dense, relativistic, ultra-thin electron layer is derived analytically for an obliquely incident probe beam. Results are obtained by two-fold Lorentz transformation. For the analytical treatment, a plane uniform electron layer is considered. All electrons move with uniform velocity under an angle to the normal direction of the plane; such electron motion corresponds to laser acceleration by direct action of the laser fields, as it is described in a companion paper. Electron density is chosen high enough to ensure that many electrons reside in a volume \lambda_R^3, where \lambda_R is the wavelength of the reflected light in the rest frame of the layer. Under these conditions, the probe light is back-scattered coherently and is directed close to the layer normal rather than the direction of electron velocity. An important consequence is that the Doppler shift is governed by \gamma_x=(1-(V_x/c)^2)^{-1/2} derived from the electron velocity component V_x in normal direction rather than the full \gamma-factor of the layer electrons.Comment: 7 pages, 4 figures, submitted to the special issue "Fundamental Physics with Ultra-High Fields" in The European Physical Journal

    Laser-driven high-power X- and gamma-ray ultra-short pulse source

    Full text link
    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation undergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor.Comment: 8 pages, 5 figures. Presented at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields" 29.09.-02.10.2008, in Frauenworth Monastery, Bavaria, German

    Ensemble of ultra-high intensity attosecond pulses from laser-plasma interaction

    Full text link
    The efficient generation of intense X-rays and γ\gamma-radiation is studied. The scheme is based on the relativistic mirror concept, {\it i.e.}, a flying thin plasma slab interacts with a counterpropagating laser pulse, reflecting part of it in the form of an intense ultra-short electromagnetic pulse having an up-shifted frequency. In the proposed scheme a series of relativistic mirrors is generated in the interaction of the intense laser with a thin foil target as the pulse tears off and accelerates thin electron layers. A counterpropagating pulse is reflected by these flying layers in the form of an ensemble of ultra-short pulses resulting in a significant energy gain of the reflected radiation due to the momentum transfer from flying layers.Comment: 6 pages, 2 figures. Phys. Lett. A, in pres
    • …
    corecore