128 research outputs found

    Diagnosis of arrhythmogenic cardiomyopathy: The Padua criteria.

    Get PDF
    The original designation of "Arrhythmogenic right ventricular (dysplasia/) cardiomyopathy"(ARVC) was used by the scientists who first discovered the disease, in the pre-genetic and pre-cardiac magnetic resonance era, to describe a new heart muscle disease predominantly affecting the right ventricle, whose cardinal clinical manifestation was the occurrence of malignant ventricular arrhythmias. Subsequently, autopsy investigations, genotype-phenotype correlations studies and the increasing use of contrast-enhancement cardiac magnetic resonance showed that the fibro-fatty replacement of the myocardium represents the distinctive phenotypic feature of the disease that affects the myocardium of both ventricles, with left ventricular involvement which may parallel or exceed the severity of right ventricular involvement. This has led to the new designation of "Arrhythmogenic Cardiomyopathy" (ACM), that represents the evolution of the original term of ARVC. The present International Expert Consensus document proposes an upgrade of the criteria for diagnosis of the entire spectrum of the phenotypic variants of ACM. The proposed "Padua criteria" derive from the diagnostic approach to ACM, which has been developed over 30 years by the multidisciplinary team of basic researchers and clinical cardiologists of the Medical School of the University of Padua. The Padua criteria are a working framework to improve the diagnosis of ACM by introducing new diagnostic criteria regarding tissue characterization findings by contrast-enhanced cardiac magnetic resonance, depolarization/repolarization ECG abnormalities and ventricular arrhythmia features for diagnosis of the left ventricular phenotype. The proposed diagnostic criteria need to be further validated by future clinical studies in large cohorts of patients

    International Evidence Based Reappraisal of Genes Associated With Arrhythmogenic Right Ventricular Cardiomyopathy Using the Clinical Genome Resource Framework

    Get PDF
    Background - Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited disease characterized by ventricular arrhythmias and progressive ventricular dysfunction. Genetic testing is recommended and a pathogenic variant in an ARVC-associated gene is a major criterion for diagnosis according to the 2010 Task Force Criteria (TFC). As incorrect attribution of a gene to ARVC can contribute to misdiagnosis, we assembled an international multidisciplinary ARVC ClinGen Gene Curation Expert Panel to reappraise all reported ARVC genes. / Methods - Following a comprehensive literature search, six two-member teams conducted blinded independent curation of reported ARVC genes using the semi-quantitative ClinGen framework. /Results - Of 26 reported ARVC genes, only six (PKP2, DSP, DSG2, DSC2, JUP, TMEM43) had strong evidence and were classified as definitive for ARVC causation. There was moderate evidence for two genes, DES and PLN. The remaining 18 genes had limited or no evidence. RYR2 was refuted as an ARVC gene since clinical data and model systems exhibited a catecholaminergic polymorphic ventricular tachycardia (CPVT) phenotype. In ClinVar, only 5 pathogenic / likely pathogenic (P/LP) variants (1.1%) in limited evidence genes had been reported in ARVC cases in contrast to 450 desmosome gene variants (97.4%). / Conclusions - Using the ClinGen approach to gene-disease curation, only eight genes, (PKP2, DSP, DSG2, DSC2, JUP, TMEM43, PLN, DES) had definitive or moderate evidence for ARVC and these genes accounted for nearly all P/LP ARVC variants in ClinVar. Therefore, only P/LP variants in these eight genes should yield a major criterion for ARVC diagnosis. P/LP variants identified in other genes in a patient should prompt further phenotyping as variants in many of these genes are associated with other cardiovascular conditions

    A novel DSP zebrafish model reveals training- and drug-induced modulation of arrhythmogenic cardiomyopathy phenotypes

    Get PDF
    Arrhythmogenic cardiomyopathy (AC) is an inherited disorder characterized by progressive loss of the ventricular myocardium causing life-threatening ventricular arrhythmias, syncope and sudden cardiac death in young and athletes. About 40% of AC cases carry one or more mutations in genes encoding for desmosomal proteins, including Desmoplakin (Dsp). We present here the first stable Dsp knock-out (KO) zebrafish line able to model cardiac alterations and cell signalling dysregulation, characteristic of the AC disease, on which environmental factors and candidate drugs can be tested. Our stable Dsp knock-out (KO) zebrafish line was characterized by cardiac alterations, oedema and bradycardia at larval stages. Histological analysis of mutated adult hearts showed reduced contractile structures and abnormal shape of the ventricle, with thinning of the myocardial layer, vessels dilation and presence of adipocytes within the myocardium. Moreover, TEM analysis revealed “pale”, disorganized and delocalized desmosomes. Intensive physical training protocol caused a global worsening of the cardiac phenotype, accelerating the progression of the disease. Of note, we detected a decrease of Wnt/β-catenin signalling, recently associated with AC pathogenesis, as well as Hippo/YAP-TAZ and TGF-β pathway dysregulation. Pharmacological treatment of mutated larvae with SB216763, a Wnt/β-catenin agonist, rescued pathway expression and cardiac abnormalities, stabilizing the heart rhythm. Overall, our Dsp KO zebrafish line recapitulates many AC features observed in human patients, pointing at zebrafish as a suitable system for in vivo analysis of environmental modulators, such as the physical exercise, and the screening of pathway-targeted drugs, especially related to the Wnt/β-catenin signalling cascade

    Circulating Cell-Free DNA in Dogs with Mammary Tumors: Short and Long Fragments and Integrity Index

    Get PDF
    Circulating cell-free DNA (cfDNA) has been considered an interesting diagnostic/prognostic plasma biomarker in tumor-bearing subjects. In cancer patients, cfDNA can hypothetically derive from tumor necrosis/apoptosis, lysed circulating cells, and some yet unrevealed mechanisms of active release. This study aimed to preliminarily analyze cfDNA in dogs with canine mammary tumors (CMTs). Forty-four neoplastic, 17 non-neoplastic disease-bearing, and 15 healthy dogs were recruited. Necrosis and apoptosis were also assessed as potential source of cfDNA on 78 CMTs diagnosed from the 44 dogs. The cfDNA fragments and integrity index significantly differentiated neoplastic versus non-neoplastic dogs (P<0.05), and allowed the distinction between benign and malignant lesions (P<0.05). Even if without statistical significance, the amount of cfDNA was also affected by tumor necrosis and correlated with tumor size and apoptotic markers expression. A significant (P<0.01) increase of Bcl-2 in malignant tumors was observed, and in metastatic CMTs the evasion of apoptosis was also suggested. This study, therefore, provides evidence that cfDNA could be a diagnostic marker in dogs carrying mammary nodules suggesting that its potential application in early diagnostic procedures should be further investigated

    Correction to: The genetic architecture of Plakophilin 2 cardiomyopathy

    Get PDF
    PURPOSE: The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. METHODS: We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. RESULTS: The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10-16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10-16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10-16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. CONCLUSION: This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position

    The genetic architecture of Plakophilin 2 cardiomyopathy

    Get PDF
    PURPOSE: The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. METHODS: We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. RESULTS: The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10-16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10-16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10-16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. CONCLUSION: This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position

    Missense mutations in Desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes encoding desmosomal proteins have been reported to cause arrhythmogenic right ventricular cardiomyopathy (ARVC), an autosomal dominant disease characterised by progressive myocardial atrophy with fibro-fatty replacement.</p> <p>We screened 54 ARVC probands for mutations in desmocollin-2 (<it>DSC2</it>), the only desmocollin isoform expressed in cardiac tissue.</p> <p>Methods</p> <p>Mutation screening was performed by denaturing high-performance liquid chromatography and direct sequencing.</p> <p>To evaluate the pathogenic potentials of the <it>DSC2 </it>mutations detected in patients affected with ARVC, full-length wild-type and mutated cDNAs were cloned in eukaryotic expression vectors to obtain a fusion protein with green fluorescence protein (GFP); constructs were transfected in neonatal rat cardiomyocytes and in HL-1 cells.</p> <p>Results</p> <p>We identified two heterozygous mutations (c.304G>A (p.E102K) and c.1034T>C (p.I345T)) in two probands and in four family members. The two mutations p.E102K and p.I345T map to the N-terminal region, relevant to adhesive interactions.</p> <p>In vitro functional studies demonstrated that, unlike wild-type DSC2, the two N-terminal mutants are predominantly localised in the cytoplasm.</p> <p>Conclusion</p> <p>The two missense mutations in the N-terminal domain affect the normal localisation of DSC2, thus suggesting the potential pathogenic effect of the reported mutations. Identification of additional DSC2 mutations associated with ARVC may result in increased diagnostic accuracy with implications for genetic counseling.</p

    Dickkopf-1 (Dkk-1) in plasma and synovial fluid is inversely correlated with radiographic severity of knee osteoarthritis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is a common degenerative joint disease causing pain, stiffness, reduced motion, swelling, crepitus, and disability. Dickkopf-1 (Dkk-1) is a critical mediator of osteoblastogenesis and regulates the joint remodeling. The aim of this study was to examine plasma and synovial fluid Dkk-1 levels of patients with primary knee OA and to investigate their relationship with disease severity.</p> <p>Methods</p> <p>Thirty-five patients aged 55-83 years with knee OA and 15 healthy individuals were recruited into this study. Disease severity was determined using weight-bearing anteroposterior radiographs of the affected knee. The radiological grading of OA in the knee was performed according to the Kellgren-Lawrence grading system. Dkk-1 levels in both plasma and synovial fluid were evaluated using enzyme-linked immunosorbent assay.</p> <p>Results</p> <p>The average concentration of circulating Dkk-1 in the knee OA patients was remarkably lower than that of healthy controls (396.0 ± 258.8, 95%CI 307.1-484.9 vs 2348.8 ± 2051.5, 95%CI 1164.3-3533.3 pg/ml, p < 0.0001). Dkk-1 levels in synovial fluid were significantly lower than in paired plasma samples (58.6 ± 31.8, 95%CI 47.7-69.6 vs 396.0 ± 258.8, 95%CI 307.1-484.9 pg/ml, p < 0.001). Furthermore, both plasma and synovial fluid Dkk-1 levels were inversely correlated with radiographic severity (r = -0.78, p < 0.001 and r = -0.42, p = 0.01, respectively). Plasma Dkk-1 levels were also significantly correlated with synovial fluid Dkk-1 levels (r = 0.72, p < 0.001).</p> <p>Conclusions</p> <p>Dkk-1 levels in plasma and synovial fluid are inversely related to the severity of joint damage in knee OA. Dkk-1 could serve as a biochemical marker for determining disease severity and might play a potential role in the pathogenesis of the degenerative process of OA.</p
    • …
    corecore