4,079 research outputs found
Non-equilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission
We analyze in detail the heating of bosonic atoms in an optical lattice due
to incoherent scattering of light from the lasers forming the lattice. Because
atoms scattered into higher bands do not thermalize on the timescale of typical
experiments, this process cannot be described by the total energy increase in
the system alone (which is determined by single-particle effects). The heating
instead involves an important interplay between the atomic physics of the
heating process and the many-body physics of the state. We characterize the
effects on many-body states for various system parameters, where we observe
important differences in the heating for strongly and weakly interacting
regimes, as well as a strong dependence on the sign of the laser detuning from
the excited atomic state. We compute heating rates and changes to
characteristic correlation functions based both on perturbation theory
calculations, and a time-dependent calculation of the dissipative many-body
dynamics. The latter is made possible for 1D systems by combining
time-dependent density matrix renormalization group (t-DMRG) methods with
quantum trajectory techniques.Comment: 17 pages, 14 figure
Measuring entanglement growth in quench dynamics of bosons in an optical lattice
We discuss a scheme to measure the many-body entanglement growth during
quench dynamics with bosonic atoms in optical lattices. By making use of a 1D
or 2D setup in which two copies of the same state are prepared, we show how
arbitrary order Renyi entropies can be extracted using tunnel-coupling between
the copies and measurement of the parity of on-site occupation numbers, as has
been performed in recent experiments. We illustrate these ideas for a
Superfluid-Mott insulator quench in the Bose-Hubbard model, and also for
hard-core bosons, and show that the scheme is robust against imperfections in
the measurements.Comment: 4+ pages plus supplementary materia
Pathologies in the sticky limit of hard-sphere-Yukawa models for colloidal fluids. A possible correction
A known `sticky-hard-sphere' model, defined starting from a
hard-sphere-Yukawa potential and taking the limit of infinite amplitude and
vanishing range with their product remaining constant, is shown to be
ill-defined. This is because its Hamiltonian (which we call SHS2) leads to an
{\it exact}second virial coefficient which {\it diverges}, unlike that of
Baxter's original model (SHS1). This deficiency has never been observed so far,
since the linearization implicit in the `mean spherical approximation' (MSA),
within which the model is analytically solvable, partly {\it masks} such a
pathology. To overcome this drawback and retain some useful features of SHS2,
we propose both a new model (SHS3) and a new closure (`modified MSA'), whose
combination yields an analytic solution formally identical with the SHS2-MSA
one. This mapping allows to recover many results derived from SHS2, after a
re-interpretation within a correct framework. Possible developments are finally
indicated.Comment: 21 pages, 1 figure, accepted in Molecular Physics (2003
Raman response of Stage-1 graphite intercalation compounds revisited
We present a detailed in-situ Raman analysis of stage-1 KC8, CaC6, and LiC6
graphite intercalation compounds (GIC) to unravel their intrinsic finger print.
Four main components were found between 1200 cm-1 and 1700 cm-1, and each of
them were assigned to a corresponding vibrational mode. From a detailed line
shape analysis of the intrinsic Fano-lines of the G- and D-line response we
precisely determine the position ({\omega}ph), line width ({\Gamma}ph) and
asymmetry (q) from each component. The comparison to the theoretical calculated
line width and position of each component allow us to extract the
electron-phonon coupling constant of these compounds. A coupling constant
{\lambda}ph < 0.06 was obtained. This highlights that Raman active modes alone
are not sufficient to explain the superconductivity within the electron-phonon
coupling mechanism in CaC6 and KC8.Comment: 6 pages, 3 figures, 2 table
- …