4,201 research outputs found
Equilibrium Configurations of Homogeneous Fluids in General Relativity
By means of a highly accurate, multi-domain, pseudo-spectral method, we
investigate the solution space of uniformly rotating, homogeneous and
axisymmetric relativistic fluid bodies. It turns out that this space can be
divided up into classes of solutions. In this paper, we present two new classes
including relativistic core-ring and two-ring solutions. Combining our
knowledge of the first four classes with post-Newtonian results and the
Newtonian portion of the first ten classes, we present the qualitative
behaviour of the entire relativistic solution space. The Newtonian disc limit
can only be reached by going through infinitely many of the aforementioned
classes. Only once this limiting process has been consummated, can one proceed
again into the relativistic regime and arrive at the analytically known
relativistic disc of dust.Comment: 8 pages, colour figures, v3: minor additions including one reference,
accepted by MNRA
Anisotropic magneto-Coulomb effect versus spin accumulation in a ferromagnetic single-electron device
We investigate the magneto-transport characteristics of nanospintronics
single-electron devices. The devices consist of single non-magnetic
nano-objects (nanometer size nanoparticles of Al or Cu) connected to Co
ferromagnetic leads. The comparison with simulations allows us attribute the
observed magnetoresistance to either spin accumulation or anisotropic
magneto-Coulomb effect (AMC), two effects with very different origins. The fact
that the two effects are observed in similar samples demonstrates that a
careful analysis of Coulomb blockade and magnetoresistance behaviors is
necessary in order to discriminate them in magnetic single-electron devices. As
a tool for further studies, we propose a simple way to determine if spin
transport or AMC effect dominates from the Coulomb blockade I-V curves of the
spintronics device
Size-resolved aerosol fluxes above a temperate broadleaf forest
Aerosol fluxes were measured by eddy-correlation for 8 weeks of the summer and fall of 2011 above a temperate broadleaf forest in central Ontario, Canada. These size-resolved measurements apply to particles with optical diameters between 50 and 500 nm and are the first ones reported above a temperate deciduous forest. The particle spectrometer was located on top of the flux tower in order to reduce signal dampening in the tube and thus maximize measurement efficiency. The 8-week data set extends into autumn, capturing leaf senescence and loss, offering a rare opportunity to investigate the influence of leaf area index on particle transfer. A distinct pattern of emission and deposition that depends on the particle size is highlighted: while the smallest particles (dp 100 nm) are preferentially deposited (62% of the time). For the size bins with detection efficiency above 50% (68–292 nm), the median transfer velocity for each bin varies between +1.34 and −2.69 mm s−1 and is equal to −0.21 mm s−1 for the total particle count. The occurrence of the upward fluxes shows a marked diurnal pattern. Possible explanations for these upward fluxes are proposed. The measurements, and their comparison with an existing model, highlight some of the key drivers of the particle transfer onto a broadleaf forest: particle size, friction velocity, leaf area index and atmospheric stability.We are grateful to the Haliburton forest staff and owner for their support, as well as Ting Zheng and Jing Ming Chen (Dept of Geography, Univ. of Toronto) for sharing the TRAC instrument LAI data. The UHSAS and SMPS instruments were contributed by the Canadian Aerosol Research Network, funded by the Canada Foundation for Innovation. (Canada Foundation for Innovation)First author draf
The solid state photomultiplier: Status of photon counting beyond the near-infrared
Rockwell International's Solid State Photomultiplier (SSPM) is an impurity-band avalanche device which can count individual photons with wavelengths between 0.4 and 28 micrometers. Its response to a photon is a pulse of between 10(exp 4) and 10(exp 5) conduction electrons, making it an important device for use in phenomenology. The characteristics of the SSPM make it a potentially important device for use in astronomical applications. Contract NAS2-12400 was initiated in June 1986 to conduct modeling and characterization studies of the SSPM to provide a basis for assessing its use in astronomical systems. Some SSPM models and results of measurements which characterize the group of SSPMs recently fabricated on this contract are discussed
Spin injection in a single metallic nanoparticle: a step towards nanospintronics
We have fabricated nanometer sized magnetic tunnel junctions using a new
nanoindentation technique in order to study the transport properties of a
single metallic nanoparticle. Coulomb blockade effects show clear evidence for
single electron tunneling through a single 2.5 nm Au cluster. The observed
magnetoresistance is the signature of spin conservation during the transport
process through a non magnetic cluster.Comment: 3 page
Complete control of a matter qubit using a single picosecond laser pulse
We demonstrate for the first time that a matter physical two level system, a
qubit, can be fully controlled using one ultrafast step. We show that the spin
state of an optically excited electron, an exciton, confined in a quantum dot,
can be rotated by any desired angle, about any desired axis, during such a
step. For this we use a single, resonantly tuned, picosecond long, polarized
optical pulse. The polarization of the pulse defines the rotation axis, while
the pulse detuning from a non-degenerate absorption resonance, defines the
magnitude of the rotation angle. We thereby achieve a high fidelity, universal
gate operation, applicable to other spin systems, using only one short optical
pulse. The operation duration equals the pulse temporal width, orders of
magnitude shorter than the qubit evolution life and coherence times.Comment: main text: 4 pages, 3 figures Supplemental material: 3 pages, 1
figur
Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons
Photonic crystal membranes (PCM) provide a versatile planar platform for
on-chip implementations of photonic quantum circuits. One prominent quantum
element is a coupled system consisting of a nanocavity and a single quantum dot
(QD) which forms a fundamental building block for elaborate quantum information
networks and a cavity quantum electrodynamic (cQED) system controlled by single
photons. So far no fast tuning mechanism is available to achieve control within
the system coherence time. Here we demonstrate dynamic tuning by monochromatic
coherent acoustic phonons formed by a surface acoustic wave (SAW) with
frequencies exceeding 1.7 gigahertz, one order of magnitude faster than
alternative approaches. We resolve a periodic modulation of the optical mode
exceeding eight times its linewidth, preserving both the spatial mode profile
and a high quality factor. Since PCMs confine photonic and phononic
excitations, coupling optical to acoustic frequencies, our technique opens ways
towards coherent acoustic control of optomechanical crystals.Comment: 11 pages 4 figure
GHz bandwidth electro-optics of a single self-assembled quantum dot in a charge-tunable device
The response of a single InGaAs quantum dot, embedded in a miniaturized
charge-tunable device, to an applied GHz bandwidth electrical pulse is
investigated via its optical response. Quantum dot response times of 1.0 \pm
0.1 ns are characterized via several different measurement techniques,
demonstrating GHz bandwidth electrical control. Furthermore a novel optical
detection technique based on resonant electron-hole pair generation in the
hybridization region is used to map fully the voltage pulse experienced by the
quantum dot, showing in this case a simple exponential rise.Comment: 7 pages, 4 figure
- …
