67 research outputs found

    Time of flight diffraction and imaging (TOFDI)

    Get PDF
    Time of flight diffraction and imaging (TOFDI) is based on time of flight diffraction (TOFD), adding cross-sectional imaging of the sample bulk by exploiting the scattering of ultrasonic waves from bulk defects in metals. Multiple wave modes are emitted by a pulsed laser ultrasound ablative source, and received by a sparse array of receiving electromagnetic acoustic transducers (EMATs), for non-contact (linear) scanning, with mode-conversions whenever waves are scattered. Standard signal processing techniques, such as band-pass filters, reduce noise. A B-scan is formed from multiple data captures (A-scans), with time and scan position axes, and colour representing amplitude or magnitude. B-scans may contain horizontal lines from surface waves propagating directly from emitter to receiver, or via a back-wall, and angled lines after reflection off a surface edge. A Hough transform (HT), modified to deal with the constraints of a B-scan, can remove such lines. A parabola matched filter has been developed that identifies the features in the B-scan caused by scattering from point-like defects, reducing them to peaks and minimising noise. Multiple B-scans are combined to reduce noise further. The B-scan is also processed to form a cross-sectional image, enabling detection and positioning of multiple defects. The standard phase correlation technique applied to camera images, has been used to track the relative position between transducer and sample. Movement has been determined to sub-pixel precision, with a median accuracy of 0.01mm of linear movement (0.06 of a pixel), despite uneven illumination and the use of a basic low resolution camera. The prototype application is testing rough steel products formed by continuous casting, but the techniques created to facilitate operation of TOFDI are applicable elsewhere

    Ultrasonic metal sheet thickness measurement without prior wave speed calibration

    Get PDF
    Conventional ultrasonic mensuration of sample thickness from one side only requires the bulk wave reverberation time and a calibration speed. This speed changes with temperature, stress, and microstructure, limiting thickness measurement accuracy. Often, only one side of a sample is accessible, making in situ calibration impossible. Non-contact ultrasound can generate multiple shear horizontal guided wave modes on one side of a metal plate. Measuring propagation times of each mode at different transducer separations, allows sheet thickness to be calculated to better than 1% accuracy for sheets of at least 1.5 mm thickness, without any calibration

    Shear horizontal (SH) ultrasound wave propagation around smooth corners

    Get PDF
    Shear horizontal (SH) ultrasound guided waves are being used in an increasing number of non-destructive testing (NDT) applications. One advantage SH waves have over some wave types, is their ability to propagate around curved surfaces with little energy loss; to understand the geometries around which they could propagate, the wave reflection must be quantified. A 0.83 mm thick aluminium sheet was placed in a bending machine, and a shallow bend was introduced. Periodically-poled magnet (PPM) electromagnetic acoustic transducers (EMATs), for emission and reception of SH waves, were placed on the same side of the bend, so that reflected waves were received. Additional bending of the sheet demonstrated a clear relationship between bend angles and the reflected signal. Models suggest that the reflection is a linear superposition of the reflections from each bend segment, such that sharp turns lead to a larger peak-to-peak amplitude, in part due to increased phase coherence

    Mode mixing in shear horizontal ultrasonic guided waves

    Get PDF
    SH guided waves are used increasingly for non-destructive testing (NDT) applications, particularly for pipes and pipe supports using circumferentially guided wave modes. In practical implementations, it is not always straightforward to ensure single-mode operation and this requires consideration when interpreting results. During shear horizontal (SH) wave generation or SH guided wave interaction with geometrical changes or defects, multiple SH guided wave modes may be produced, depending on the shear wave speed, the frequency of operation, the thickness of the sample and the transducer characteristics. This paper discusses the interference patterns created as the multiple SH modes mix (for both continuous tone generation and short bursts), and the problems caused by the interference patterns on applications such as NDT. In particular, the patterns can lead to defects being missed during an NDT inspection using SH waves, and a way to circumvent this problem is suggested

    Investigation of the Domain Wall Fermion Approach to Chiral Gauge Theories on the Lattice

    Full text link
    We investigate a recent proposal to construct chiral gauge theories on the lattice using domain wall fermions. We restrict ourselves to the finite volume case, in which two domain walls are present, with modes of opposite chirality on each of them. We couple the chiral fermions on only one of the domain walls to a gauge field. In order to preserve gauge invariance, we have to add a scalar field, which gives rise to additional light mirror fermion and scalar modes. We argue that in an anomaly free model these extra modes would decouple if our model possesses a so-called strong coupling symmetric phase. However, our numerical results indicate that such a phase most probably does not exist. ---- Note: 9 Postscript figures are appended as uuencoded compressed tar file.Comment: 27p. Latex; UCSD/PTH 93-28, Wash. U. HEP/93-6

    Certified compilation for cryptography: Extended x86 instructions and constant-time verification

    Get PDF
    We present a new tool for the generation and verification of high-assurance high-speed machine-level cryptography implementations: a certified C compiler supporting instruction extensions to the x86. We demonstrate the practical applicability of our tool by incorporating it into supercop: a toolkit for measuring the performance of cryptographic software, which includes over 2000 different implementations. We show i. that the coverage of x86 implementations in supercop increases significantly due to the added support of instruction extensions via intrinsics and ii. that the obtained verifiably correct implementations are much closer in performance to unverified ones. We extend our compiler with a specialized type system that acts at pre-assembly level; this is the first constant-time verifier that can deal with extended instruction sets. We confirm that, by using instruction extensions, the performance penalty for verifiably constant-time code can be greatly reduced.This work is financed by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the project PTDC/CCI-INF/31698/2017, and by the Norte Portugal Regional Operational Programme (NORTE 2020) under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and also by national funds through the FCT, within project NORTE-01-0145-FEDER-028550 (REASSURE)

    Crosslinker Copolymerization for Property Control in Inverse Vulcanization.

    Get PDF
    Sulfur is an underused by-product of the petrochemicals industry. Recent research into inverse vulcanization has shown how this excess sulfur can be transformed into functional polymers, by stabilization with organic crosslinkers. For these interesting new materials to realize their potential for applications, more understanding and control of their physical properties is needed. Here we report four new terpolymers prepared from sulfur and two distinct alkene monomers that can be predictively tuned in glass transition, molecular weight, solubility, mechanical properties, and color

    Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture

    Get PDF
    Sulfur is not only a highly abundant element, but also produced as a by-product of the petrochemicals industry. However, it has not been conventionally used to produce functional materials because polymeric sulfur is unstable, and decomposes back to its monomer. Recently, inverse vulcanisation has been used to produce stable polymeric materials with elemental sulfur as a major component. Here we report a series of alternative crosslinkers for inverse vulcanisation that are either low-cost industrial byproducts, or bio-derived renewables. These are shown to produce stable polymers with superior properties to previously reported materials. When made porous by the action of supercritical carbon dioxide or salt templating, these high sulfur polymers show excellent potential for mercury capture and filtration
    corecore