105 research outputs found

    Combined in vitro and in silico approaches to the assessment of stimulant properties of novel psychoactive substances – The case of the benzofuran 5-MAPB

    Get PDF
    Novel psychoactive substances (NPS) are increasingly prevalent world-wide although their pharmacological characteristics are largely unknown; those with stimulant properties, due to interactions with the dopamine transporter (DAT), have addictive potential which their users may not realise. We evaluated the binding of 1-(1-benzofuran-5-yl)-N-methylpropan-2-amine (5-MAPB) to rat striatal DAT by means of quantitative autoradiography with [125I]RTI-121, and the effects of 5-MAPB on electrically-evoked dopamine efflux by fast-cyclic voltammetry in rat brain slices. 5-MAPB displaced [125I]RTI-121 in a concentration-dependent manner, with significant effects at 10 and 30 ÎĽM. The voltammetry data suggest that 5-MAPB reduces the rate of dopamine reuptake; while the peak dopamine efflux was not increased, the area under the curve was augmented. 5-MAPB can also cause reverse dopamine transport consistent with stimulant properties, more similar to amphetamine than cocaine. Molecular modelling and docking studies compared the binding site of DAT in complex with 5-MAPB to dopamine, amphetamine, 5-APB, MDMA, cocaine and RTI-121. This structural comparison reveals a binding mode for 5-MAPB found in the primary binding (S1) site, central to transmembrane domains 1, 3, 6 and 8, which overlaps with the binding modes of dopamine, cocaine and its analogues. Atomistic molecular dynamics simulations further show that, when in complex with 5-MAPB, DAT can exhibit conformational transitions that spontaneously isomerize the transporter into inward-facing state, similarly to that observed in dopamine-bound DAT. These novel insights, offered by the combination of computational methods of biophysics with neurobiological procedures, provide structural context for NPS at DAT and relate them with their functional properties at DAT as the molecular target of stimulants

    Data for: Dissection of protonation sites for antibacterial recognition and transport in QacA, a multi-drug efflux transporter

    No full text
    The data comprises the raw data files of the manuscript titled "Dissection of protonations sites for antibacterial recognition and transport in QacA, a multi-drug efflux transporter", authored by Majumder et al

    Data for: Dissection of protonation sites for antibacterial recognition and transport in QacA, a multi-drug efflux transporter

    No full text
    The data comprises the raw data files of the manuscript titled "Dissection of protonations sites for antibacterial recognition and transport in QacA, a multi-drug efflux transporter", authored by Majumder et al.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Magnesium diboride on inner wall of copper tube: A test case for superconducting radio frequency cavities

    No full text
    Superconductor magnesium diboride is considered one of the viable materials to substitute bulk niobium for superconducting radio frequency cavities. Utilizing a MgB_{2} coating on the inner wall of a copper cavity will allow operation at higher temperatures (20–25 K) than Nb cavities due to the high transition temperature of MgB_{2} (39 K) and the high thermal conductivity of Cu. In this paper, we present results of MgB_{2} coating on Cu tubes with similar dimensions to a 3 GHz cavity, as the first step towards coating the actual cavity, using the hybrid physical chemical vapor deposition technique. The results show successful coating of a uniform MgB_{2} layer on the inner wall of the Cu tubes with T_{c} as high as 37 K

    Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia.

    Get PDF
    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea

    SLC6A1 Mutation and Ketogenic Diet in Epilepsy With Myoclonic-Atonic Seizures

    No full text
    BACKGROUND: Epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy or Doose syndrome, has been recently linked to variants in the SLC6A1 gene. Epilepsy with myoclonic-atonic seizures is often refractory to antiepileptic drugs, and the ketogenic diet is known for treating medically intractable seizures, although the mechanism of action is largely unknown. We report a novel SLC6A1 variant in a patient with epilepsy with myoclonic-atonic seizures, analyze its effects, and suggest a mechanism of action for the ketogenic diet. METHODS: We describe a ten-year-old girl with epilepsy with myoclonic-atonic seizures and a de novo SLC6A1 mutation who responded well to the ketogenic diet. She carried a c.491G>A mutation predicted to cause p.Cys164Tyr amino acid change, which was identified using whole exome sequencing and confirmed by Sanger sequencing. High-resolution structural modeling was used to analyze the likely effects of the mutation. RESULTS: The SLC6A1 gene encodes a transporter that removes gamma-aminobutyric acid from the synaptic cleft. Mutations in SLC6A1 are known to disrupt the gamma-aminobutyric acid transporter protein 1, affecting gamma-aminobutyric acid levels and causing seizures. The p.Cys164Tyr variant found in our study has not been previously reported, expanding on the variants linked to epilepsy with myoclonic-atonic seizures. CONCLUSION: A 10-year-old girl with a novel SLC6A1 mutation and epilepsy with myoclonic-atonic seizures had an excellent clinical response to the ketogenic diet. An effect of the diet on gamma-aminobutyric acid reuptake mediated by gamma-aminobutyric acid transporter protein 1 is suggested. A personalized approach to epilepsy with myoclonic-atonic seizures patients carrying SLC6A1 mutation and a relationship between epilepsy with myoclonic-atonic seizures due to SLC6A1 mutations, GABAergic drugs, and the ketogenic diet warrants further exploration
    • …
    corecore