1,225 research outputs found
The Influence of Magnetic Domain Walls on Longitudinal and Transverse Magnetoresistance in Tensile Strained (Ga,Mn)As Epilayers
We present a theoretical analysis of recent experimental measurements of
magnetoresistance in (Ga,Mn)As epilayers with perpendicular magnetic
anisotropy. The model reproduces the field-antisymmetric anomalies observed in
the longitudinal magnetoresistance in the planar geometry (magnetic field in
the epilayer plane and parallel to the current density), as well as the unusual
shape of the accompanying transverse magnetoresistance. The magnetoresistance
characteristics are attributed to circulating currents created by the presence
of magnetic domain walls
Granitic Boulder Erosion Caused by Chaparral Wildfire: Implications for Cosmogenic Radionuclide Dating of Bedrock Surfaces
Rock surface erosion by wildfire is significant and widespread but has not been quantified in southern California or for chaparral ecosystems. Quantifying the surface erosion of bedrock outcrops and boulders is critical for determination of age using cosmogenic radionuclide techniques, as even modest surface erosion removes the accumulation of the cosmogenic radionuclides and causes significant underestimate of age. This study documents the effects on three large granitic boulders following the Esperanza Fire of 2006 in southern California. Spalled rock fragments were quantified by measuring the removed rock volume from each measured boulder. Between 7% and 55% of the total surface area of the boulders spalled in this single fire. The volume of spalled material, when normalized across the entire surface area, represents a mean surface lowering of 0.7–12.3 mm. Spalled material was thicker on the flanks of the boulders, and the height of the fire effects significantly exceeded the height of the vegetation prior to the wildfire. Surface erosion of boulders and bedrock outcrops as a result of wildfire spalling results in fresh surfaces that appear unaffected by chemical weathering. Such surfaces may be preferentially selected by researchers for cosmogenic surface dating because of their fresh appearance, leading to an underestimate of age
An Approach Using PSA Levels of 1.5 ng/mL as the Cutoff for Prostate Cancer Screening in Primary Care.
Transformation of ENSO-related rainwater to dripwater δ^(18)O variability by vadose water mixing
Speleothem oxygen isotopes (δ^(18)O) are often used to reconstruct past rainfall δ^(18)O variability, and thereby hydroclimate changes, in many regions of the world. However, poor constraints on the karst hydrological processes that transform rainfall signals into cave dripwater add significant uncertainty to interpretations of speleothem-based reconstructions. Here we present several 6.5 year, biweekly dripwater δ^(18)O time series from northern Borneo and compare them to local rainfall δ^(18)O variability. We demonstrate that vadose water mixing is the primary rainfall-to-dripwater transformation process at our site, where dripwater δ^(18)O reflects amount-weighted rainfall δ^(18)O integrated over the previous 3–10 months. We document large interannual dripwater δ^(18)O variability related to the El Niño–Southern Oscillation (ENSO), with amplitudes inversely correlated to dripwater residence times. According to a simple stalagmite forward model, asymmetrical ENSO extremes produce significant offsets in stalagmite δ^(18)O time series given different dripwater residence times. Our study highlights the utility of generating multiyear, paired time series of rainfall and dripwater δ^(18)O to aid interpretations of stalagmite δ^(18)O reconstructions
Interface states in junctions of two semiconductors with intersecting dispersion curves
A novel type of shallow interface state in junctions of two semiconductors
without band inversion is identified within the envelope function
approximation, using the two-band model. It occurs in abrupt junctions when the
interband velocity matrix elements of the two semiconductors differ and the
bulk dispersion curves intersect. The in-plane dispersion of the interface
state is found to be confined to a finite range of momenta centered around the
point of intersection. These states turn out to exist also in graded junctions,
with essentially the same properties as in the abrupt case.Comment: 1 figur
Proterozoic ocean redox and biogeochemical stasis
The partial pressure of oxygen in Earth’s atmosphere has increased dramatically through time, and this increase is thought to have occurred in two rapid steps at both ends of the Proterozoic Eon (∼2.5–0.543 Ga). However, the trajectory and mechanisms of Earth’s oxygenation are still poorly constrained, and little is known regarding attendant changes in ocean ventilation and seafloor redox. We have a particularly poor understanding of ocean chemistry during the mid-Proterozoic (∼1.8–0.8 Ga). Given the coupling between redox-sensitive trace element cycles and planktonic productivity, various models for mid-Proterozoic ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients, with potential ecological constraints on emerging eukaryotic life. Here, we exploit the differing redox behavior of molybdenum and chromium to provide constraints on seafloor redox evolution by coupling a large database of sedimentary metal enrichments to a mass balance model that includes spatially variant metal burial rates. We find that the metal enrichment record implies a Proterozoic deep ocean characterized by pervasive anoxia relative to the Phanerozoic (at least ∼30–40% of modern seafloor area) but a relatively small extent of euxinic (anoxic and sulfidic) seafloor (less than ∼1–10% of modern seafloor area). Our model suggests that the oceanic Mo reservoir is extremely sensitive to perturbations in the extent of sulfidic seafloor and that the record of Mo and chromium enrichments through time is consistent with the possibility of a Mo–N colimited marine biosphere during many periods of Earth’s history
Association between pain outcomes and race and opioid treatment: Retrospective cohort study of Veterans
We examined whether pain outcomes (pain interference, perceived pain treatment effectiveness) vary by race and then whether opioid use moderates these associations.
These analyses are part of a retrospective cohort study among 3,505 black and 46,203 non-Hispanic, white Department of Veterans Affairs (VA) patients with diagnoses of chronic musculoskeletal pain who responded to the 2007 VA Survey of Healthcare Experiences of Patients (SHEP). We used electronic medical record data to identify prescriptions for pharmacologic pain treatments in the year after diagnosis (Pain Diagnosis index visit) and before the SHEP index visit (the visit that made one eligible to complete the SHEP); pain outcomes came from the SHEP. We found no significant associations between race and pain interference or perceived effectiveness of pain treatment. VA patients with opioid prescriptions between the Pain Diagnosis index visit and the SHEP index visit reported greater pain interference on the SHEP than those without opioid prescriptions during that period. Opioid prescriptions were not associated with perceived treatment effectiveness for most patients. Findings raise questions about benefits of opioids for musculoskeletal pain and point to the need for alternative treatments for addressing chronic noncancer pain
Tight-binding study of interface states in semiconductor heterojunctions
Localized interface states in abrupt semiconductor heterojunctions are
studied within a tight-binding model. The intention is to provide a microscopic
foundation for the results of similar studies which were based upon the
two-band model within the envelope function approximation. In a two-dimensional
description, the tight-binding Hamiltonian is constructed such that the
Dirac-like bulk spectrum of the two-band model is recovered in the continuum
limit. Localized states in heterojunctions are shown to occur under conditions
equivalent to those of the two-band model. In particular, shallow interface
states are identified in non-inverted junctions with intersecting bulk
dispersion curves. As a specific example, the GaSb-AlSb heterojunction is
considered. The matching conditions of the envelope function approximation are
analyzed within the tight-binding description.Comment: RevTeX, 11 pages, 3 figures, to appear in Phys. Rev.
Prediction of Anisotropic Single-Dirac-Cones in BiSb Thin Films
The electronic band structures of BiSb thin films can be
varied as a function of temperature, pressure, stoichiometry, film thickness
and growth orientation. We here show how different anisotropic
single-Dirac-cones can be constructed in a BiSb thin film for
different applications or research purposes. For predicting anisotropic
single-Dirac-cones, we have developed an iterative-two-dimensional-two-band
model to get a consistent inverse-effective-mass-tensor and band-gap, which can
be used in a general two-dimensional system that has a non-parabolic dispersion
relation as in a BiSb thin film system
- …
