84 research outputs found

    Predicting human mobility through the assimilation of social media traces into mobility models

    Get PDF
    Predicting human mobility flows at different spatial scales is challenged by the heterogeneity of individual trajectories and the multi-scale nature of transportation networks. As vast amounts of digital traces of human behaviour become available, an opportunity arises to improve mobility models by integrating into them proxy data on mobility collected by a variety of digital platforms and location-aware services. Here we propose a hybrid model of human mobility that integrates a large-scale publicly available dataset from a popular photo-sharing system with the classical gravity model, under a stacked regression procedure. We validate the performance and generalizability of our approach using two ground-truth datasets on air travel and daily commuting in the United States: using two different cross-validation schemes we show that the hybrid model affords enhanced mobility prediction at both spatial scales.Comment: 17 pages, 10 figure

    Anomaly detection in temporal graph data: An iterative tensor decomposition and masking approach

    Get PDF
    Sensors and Internet-of-Things scenarios promise a wealth of interaction data that can be naturally represented by means of timevarying graphs. This brings forth new challenges for the identification and removal of temporal graph anomalies that entail complex correlations of topological features and activity patterns. Here we present an anomaly detection approach for temporal graph data based on an iterative tensor decomposition and masking procedure. We test this approach using highresolution social network data from wearable sensors and show that it successfully detects anomalies due to sensor wearing time protocols.published_or_final_versio

    Time-varying graph representation learning via higher-order skip-gram with negative sampling

    Get PDF
    Representation learning models for graphs are a successful family of techniques that project nodes into feature spaces that can be exploited by other machine learning algorithms. Since many real-world networks are inherently dynamic, with interactions among nodes changing over time, these techniques can be defined both for static and for time-varying graphs. Here, we show how the skip-gram embedding approach can be generalized to perform implicit tensor factorization on different tensor representations of time-varying graphs. We show that higher-order skip-gram with negative sampling (HOSGNS) is able to disentangle the role of nodes and time, with a small fraction of the number of parameters needed by other approaches. We empirically evaluate our approach using time-resolved face-to-face proximity data, showing that the learned representations outperform state-of-the-art methods when used to solve downstream tasks such as network reconstruction. Good performance on predicting the outcome of dynamical processes such as disease spreading shows the potential of this method to estimate contagion risk, providing early risk awareness based on contact tracing data. Supplementary information: The online version contains supplementary material available at 10.1140/epjds/s13688-022-00344-8

    Temporal networks of face-to-face human interactions

    Full text link
    The ever increasing adoption of mobile technologies and ubiquitous services allows to sense human behavior at unprecedented levels of details and scale. Wearable sensors are opening up a new window on human mobility and proximity at the finest resolution of face-to-face proximity. As a consequence, empirical data describing social and behavioral networks are acquiring a longitudinal dimension that brings forth new challenges for analysis and modeling. Here we review recent work on the representation and analysis of temporal networks of face-to-face human proximity, based on large-scale datasets collected in the context of the SocioPatterns collaboration. We show that the raw behavioral data can be studied at various levels of coarse-graining, which turn out to be complementary to one another, with each level exposing different features of the underlying system. We briefly review a generative model of temporal contact networks that reproduces some statistical observables. Then, we shift our focus from surface statistical features to dynamical processes on empirical temporal networks. We discuss how simple dynamical processes can be used as probes to expose important features of the interaction patterns, such as burstiness and causal constraints. We show that simulating dynamical processes on empirical temporal networks can unveil differences between datasets that would otherwise look statistically similar. Moreover, we argue that, due to the temporal heterogeneity of human dynamics, in order to investigate the temporal properties of spreading processes it may be necessary to abandon the notion of wall-clock time in favour of an intrinsic notion of time for each individual node, defined in terms of its activity level. We conclude highlighting several open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series: Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.

    Explainability Methods for Natural Language Processing: Applications to Sentiment Analysis

    Get PDF
    Sentiment analysis is the process of classifying natural lan-guage sentences as expressing positive or negative sentiments, and it is a crucial task where the explanation of a prediction might arguably be as necessary as the prediction itself. We analysed di fierent explanation techniques, and we applied them to the classification task of Sentiment Analysis. We explored how attention-based techniques can be exploited to extract meaningful sentiment scores with a lower computational cost than existing XAI methods

    The impact of news exposure on collective attention in the United States during the 2016 Zika epidemic

    Get PDF
    In recent years, many studies have drawn attention to the important role of collective awareness and human behaviour during epidemic outbreaks. A number of modelling efforts have investigated the interaction between the disease transmission dynamics and human behaviour change mediated by news coverage and by information spreading in the population. Yet, given the scarcity of data on public awareness during an epidemic, few studies have relied on empirical data. Here, we use fine-grained, geo-referenced data from three online sources-Wikipedia, the GDELT Project and the Internet Archive-to quantify population-scale information seeking about the 2016 Zika virus epidemic in the U.S., explicitly linking such behavioural signal to epidemiological data. Geo-localized Wikipedia pageview data reveal that visiting patterns of Zika-related pages in Wikipedia were highly synchronized across the United States and largely explained by exposure to national television broadcast. Contrary to the assumption of some theoretical epidemic models, news volume and Wikipedia visiting patterns were not significantly correlated with the magnitude or the extent of the epidemic. Attention to Zika, in terms of Zika-related Wikipedia pageviews, was high at the beginning of the outbreak, when public health agencies raised an international alert and triggered media coverage, but subsequently exhibited an activity profile that suggests nonlinear dependencies and memory effects in the relation between information seeking, media pressure, and disease dynamics. This calls for a new and more general modelling framework to describe the interaction between media exposure, public awareness and disease dynamics during epidemic outbreaks

    Adversarial Online Collaborative Filtering

    Get PDF
    We investigate the problem of online collaborative filtering under no-repetition constraints, whereby users need to be served content in an online fashion and a given user cannot be recommended the same content item more than once. We start by designing and analyzing an algorithm that works under biclustering assumptions on the user-item preference matrix, and show that this algorithm exhibits an optimal regret guarantee, while being fully adaptive, in that it is oblivious to any prior knowledge about the sequence of users, the universe of items, as well as the biclustering parameters of the preference matrix. We then propose a more robust version of this algorithm which operates with general matrices. Also this algorithm is parameter free, and we prove regret guarantees that scale with the amount by which the preference matrix deviates from a biclustered structure. To our knowledge, these are the first results on online collaborative filtering that hold at this level of generality and adaptivity under no-repetition constraints. Finally, we complement our theoretical findings with simple experiments on real-world datasets aimed at both validating the theory and empirically comparing to standard baselines. This comparison shows the competitive advantage of our approach over these baselines

    Mapping urban socioeconomic inequalities in developing countries through Facebook advertising data

    Get PDF
    Ending poverty in all its forms everywhere is the number one Sustainable Development Goal of the UN 2030 Agenda. To monitor the progress toward such an ambitious target, reliable, up-to-date and fine-grained measurements of socioeconomic indicators are necessary. When it comes to socioeconomic development, novel digital traces can provide a complementary data source to overcome the limits of traditional data collection methods, which are often not regularly updated and lack adequate spatial resolution. In this study, we collect publicly available and anonymous advertising audience estimates from Facebook to predict socioeconomic conditions of urban residents, at a fine spatial granularity, in four large urban areas: Atlanta (USA), Bogotá (Colombia), Santiago (Chile), and Casablanca (Morocco). We find that behavioral attributes inferred from the Facebook marketing platform can accurately map the socioeconomic status of residential areas within cities, and that predictive performance is comparable in both high and low-resource settings. Our work provides additional evidence of the value of social advertising media data to measure human development and it also shows the limitations in generalizing the use of these data to make predictions across countries

    RV4JaCa—Towards Runtime Verification of Multi-Agent Systems and Robotic Applications

    Get PDF
    This paper presents a Runtime Verification (RV) approach for Multi-Agent Systems (MAS) using the JaCaMo framework. Our objective is to bring a layer of security to the MAS. This is achieved keeping in mind possible safety-critical uses of the MAS, such as robotic applications. This layer is capable of controlling events during the execution of the system without needing a specific implementation in the behaviour of each agent to recognise the events. In this paper, we mainly focus on MAS when used in the context of hybrid intelligence. This use requires communication between software agents and human beings. In some cases, communication takes place via natural language dialogues. However, this kind of communication brings us to a concern related to controlling the flow of dialogue so that agents can prevent any change in the topic of discussion that could impair their reasoning. The latter may be a problem and undermine the development of the software agents. In this paper, we tackle this problem by proposing and demonstrating the implementation of a framework that aims to control the dialogue flow in a MAS; especially when the MAS communicates with the user through natural language to aid decision-making in a hospital bed allocation scenario

    RV4JaCa - Runtime Verification for Multi-Agent Systems

    Get PDF
    This paper presents a Runtime Verification (RV) approach for Multi-Agent Systems (MAS) using the JaCaMo framework. Our objective is to bring a layer of security to the MAS. This layer is capable of controlling events during the execution of the system without needing a specific implementation in the behaviour of each agent to recognise the events. MAS have been used in the context of hybrid intelligence. This use requires communication between software agents and human beings. In some cases, communication takes place via natural language dialogues. However, this kind of communication brings us to a concern related to controlling the flow of dialogue so that agents can prevent any change in the topic of discussion that could impair their reasoning. We demonstrate the implementation of a monitor that aims to control this dialogue flow in a MAS that communicates with the user through natural language to aid decision-making in hospital bed allocation
    corecore