47 research outputs found

    Coulomb drag as a measure of trigonal warping in doped graphene

    Full text link
    I suggest to use the effect of Coulomb drag between two closely positioned graphite monolayers (graphene sheets) for experimental measurement of the strength of weak non-linearities of the spectrum in graphene. I consider trigonal warping as a representative mechanism responsible for the drag effect. Since graphene is relatively defect-free, I evaluate the drag conductivity in the ballistic regime and find that it is proportional to the fourth power of the warping strength.Comment: 4 pages, 1 figur

    Van der Waals Frictional Drag induced by Liquid Flow in Low- Dimensional Systems

    Get PDF
    We study the van der Waals frictional drag force induced by liquid flow in low-dimensional systems (2D and 1D electron systems, and 2D and 1D channels with liquid). We find that for both 1D and 2D systems, the frictional drag force induced by liquid flow may be several orders of magnitude larger than the frictional drag induced by electronic current.Comment: 10 pages, 4 figure

    Effective Drag Between Strongly Inhomogeneous Layers: Exact Results and Applications

    Full text link
    We generalize Dykhne's calculation of the effective resistance of a 2D two-component medium to the case of frictional drag between the two parallel two-component layers. The resulting exact expression for the effective transresistance, ρeffD\rho^D_{eff}, is analyzed in the limits when the resistances and transresistances of the constituting components are strongly different - situation generic for the vicinity of the {\em classical} (percolative) metal-insulator transition (MIT). On the basis of this analysis we conclude that the evolution of ρeffD\rho^D_{eff} across the MIT is determined by the type of correlation between the components, constituting the 2D layers. Depending on this correlation, in the case of two electron layers, ρeffD\rho^D_{eff} changes either monotonically or exhibits a sharp maximum. For electron-hole layers ρeffD\rho^D_{eff} is negative and ρeffD|\rho^D_{eff}| exhibits a sharp minimum at the MIT.Comment: 7 pages, 3 figure

    On the temperature dependence of ballistic Coulomb drag in nanowires

    Full text link
    We have investigated within the theory of Fermi liquid dependence of Coulomb drag current in a passive quantum wire on the applied voltage VV across an active wire and on the temperature TT for any values of eV/kBTeV/k_BT. We assume that the bottoms of the 1D minibands in both wires almost coincide with the Fermi level. We come to conclusions that 1) within a certain temperature interval the drag current can be a descending function of the temperature TT; 2) the experimentally observed temperature dependence T0.77T^{-0.77} of the drag current can be interpreted within the framework of Fermi liquid theory; 3) at relatively high applied voltages the drag current as a function of the applied voltage saturates; 4) the screening of the electron potential by metallic gate electrodes can be of importance.Comment: 7 pages, 1 figur

    Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    Get PDF
    We calculate the intershell resistance R_{21} in a multiwall carbon nanotube as a function of temperature T and Fermi level (e.g. a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I_1 in one shell induces a voltage drop V_2 in another shell by the screened Coulomb interaction between the shells neglecting the intershell tunnelling. We provide benchmark results for R_{21}=V_2/I_1 within the Fermi liquid theory using Boltzmann equations. The band structure gives rise to strongly chirality dependent suppression effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R_{21} and even the sign of R_{21} can change depending on the chirality of the inner and outer tube and misalignment of inner and outer tube Fermi levels. However for any tube combination, we predict a dip (or peak) in R_{21} as a function of gate voltage, since R_{21} vanishes at the electron-hole symmetry point. As a byproduct, we classified all metallic tubes into either zigzag-like or armchair-like, which have two different non-zero crystal angular momenta m_a, m_b and only zero angular momentum, respectively.Comment: 17 pages, 10 figure

    Coulomb drag between ballistic quantum wires

    Full text link
    We develop a kinetic equation description of Coulomb drag between ballistic one-dimensional electron systems, which enables us to demonstrate that equilibration processes between right- and left-moving electrons are crucially important for establishing dc drag. In one-dimensional geometry, this type of equilibration requires either backscattering near the Fermi level or scattering with small momentum transfer near the bottom of the electron spectrum. Importantly, pairwise forward scattering in the vicinity of the Fermi surface alone is not sufficient to produce a nonzero dc drag resistivity ρD\rho_{\rm D}, in contrast to a number of works that have studied Coulomb drag due to this mechanism of scattering before. We show that slow equilibration between two subsystems of electrons of opposite chirality, "bottlenecked" by inelastic collisions involving cold electrons near the bottom of the conduction band, leads to a strong suppression of Coulomb drag, which results in an activation dependence of ρD\rho_{\rm D} on temperature---instead of the conventional power law. We demonstrate the emergence of a drag regime in which ρD\rho_{\rm D} does not depend on the strength of interwire interactions, while depending strongly on the strength of interactions inside the wires.Comment: 41 pages, 11 figures, more extended discussion, figures adde

    Coulomb Drag for Strongly Localized Electrons: Pumping Mechanism

    Full text link
    The mutual influence of two layers with strongly loclized electrons is exercised through the random Coulomb shifts of site energies in one layer caused by electron hops in the other layer. We trace how these shifts give rise to a voltage drop in the passive layer, when a current is passed through the active layer. We find that the microscopic origin of drag lies in the time correlations of the occupation numbers of the sites involved in a hop. These correlations are neglected within the conventional Miller-Abrahams scheme for calculating the hopping resistance.Comment: 5 pages, 3 figure

    Density imbalance effect on the Coulomb drag upturn in an electron-hole bialyer

    Full text link
    A low-temperature upturn of the Coulomb drag resistivity measured in an undoped electron-hole bilayer (uEHBL) device, possibly manifesting from exciton formation or condensation, was recently observed. The effects of density imbalance on this upturn are examined. Measurements of drag as a function of temperature in a uEHBL with a 20 nm wide Al.90_{.90}Ga.10_{.10}As barrier layer at various density imbalances are presented. The results show drag increasing as the density of either two dimensional system was reduced, both within and above the upturn temperature regime. A comparison of the data with numerical calculations of drag in the presence of electron-hole pairing fluctuations, which qualitatively reproduce the drag upturn behavior, is also presented. The calculations, however, predict a peak in drag at matched densities, which is not reflected by the measurements.Comment: 4 pages, 4 figures, submitted to PRB Rapi

    Frictional drag between quantum wells mediated by fluctuating electromagnetic field

    Full text link
    We use the theory of the fluctuating electromagnetic field to calculate the frictional drag between nearby two-and three dimensional electron systems. The frictional drag results from coupling via a fluctuating electromagnetic field, and can be considered as the dissipative part of the van der Waals interaction. In comparison with other similar calculations for semiconductor two-dimensional system we include retardation effects. We consider the dependence of the frictional drag force on the temperature TT, electron density and separation dd. We find, that retardation effects become dominating factor for high electron densities, corresponding thing metallic film, and suggest a new experiment to test the theory. The relation between friction and heat transfer is also briefly commented on.Comment: 14 pages, 4 figure

    Coulomb Drag at the Onset of Anderson Insulators

    Full text link
    It is shown that the Coulomb drag between two identical layers in the Anderson insulting state indicates a striking difference between the Mott and Efros-Shklovskii (ES) insulators. In the former, the trans-resistance ρt\rho_t is monotonically increasing with the localization length ξ\xi; in the latter, the presence of a Coulomb gap leads to an opposite result: ρt\rho_t is enhanced with a decreasing ξ\xi, with the same exponential factor as the single layer resistivity. This distinction reflects the relatively pronounced role of excited density fluctuations in the ES state, implied by the enhancement in the rate of hopping processes at low frequencies. The magnitude of drag is estimated for typical experimental parameters in the different cases. It is concluded that a measurement of drag can be used to distinguish between interacting and non-interacting insulating state.Comment: 15 pages, revte
    corecore