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Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study
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We calculate the intershell resistanceR21 in a multiwall carbon nanotube as a function of temperatureT and
Fermi level «F se.g., a gate voltaged, varying the chirality of the inner and outer tubes. This is done in a
so-called Coulomb drag setup, where a currentI1 in one shell induces a voltage dropV2 in another shell by the
screened Coulomb interaction between the shells neglecting the intershell tunneling. We provide benchmark
results forR21=V2/ I1 within the Fermi liquid theory using Boltzmann equations. The band structure gives rise
to strongly chirality-dependent suppression effects for the Coulomb drag between different tubes due to selec-
tion rules combined with mismatching of wave vector and crystal angular momentum conservation near the
Fermi level. This gives rise to orders of magnitude changes inR21 and even the sign ofR21 can change
depending on the chirality of the inner and outer tube and misalignment of inner and outer tube Fermi levels.
However for any tube combination, we predict a dipsor peakd in R21 as a function of gate voltage, sinceR21

vanishes at the electron-hole symmetry point. As a by-product, we classifiedall metallic tubes into either
zigzaglike or armchairlike, which have two different nonzero crystal angular momentama, mb and only zero
angular momentum, respectively.

DOI: 10.1103/PhysRevB.71.125408 PACS numberssd: 73.63.Fg, 73.23.2b

I. INTRODUCTION

A. General considerations on nanotubes

Carbon nanotubes are widely recognized as being among
the most promising materials for future nanotechnology ap-
plications. Furthermore, they are of fundamental scientific
interest due to several unique electronic, mechanical, and
thermal properties.1 These properties often depend on the
microscopic details of their composition, e.g., the way the
graphene sheets are rolled into tubes and whether one has a
single or multiwall carbon nanotube or a rope or bundle of
these. Electrical transport measurements have shown a ten-
dency for ballistic transport in individual singlewall carbon
nanotubes2–4 sSWCNTd and diffusive transport in multiwall
carbon nanotubes4–7 sMWCNTd, but this issue is not com-
pletely settled yet8 and seems to depend crucially on the
contacts to the tubes and the amount of defects and impuri-
ties in and near the tube. Many experiments9–15 have ex-
plored the Coulomb blockade regime, where the tube can be
treated as a quantum dot, due to poor electric contact. More
recently, better electrical contacts have been achieved,3,16–18

which gives larger conductance, approaching the predicted
4e2/h, and a coherentsor Landauer-Büttiker-liked regime is
thereby reached. Palladium seems to be a promising candi-
date for good future ohmic contacts.17,18Another interesting
feature of carbon nanotubes is their one-dimensional nature,
which may have profound consequences on the basic physi-
cal phenomenology for their description: SWCNT’s have
been predicted to be Luttinger liquids19,20 and some experi-
mental evidence exists21,22 even though other interpretations
have been suggested.23 Whether MWCNT’s are Fermi or
Luttinger liquids has been investigated extensively
experimentally24–26 and theoretically27 and seems to depend

on the situation, but is still subject to debate. Also in ropes
the situation is not clear yet.28

The structure of this paper is as follows. We begin by
introducing the intershell resistance problem in MWCNT’s
and our approach to it in Sec. I B. In Sec. I C we review the
basic qualitative features of our theory of the intershell resis-
tance using a Coulomb drag setup. Sections II and III are
devoted to a summary of the band structure and a calculation
of the screened Coulomb matrix element including the im-
portant suppression rules for backscattering in metallic tubes,
and in Sec. IV we indicate how the standard transresistance
formulas are modified in the nanotube configuration. Sec-
tions V–VII give our results for several different nanotube
combinations. Details of the nanotube band structure and the
screening model including the band structure are found in the
Appendixes.

B. Intershell resistance in MWCNT’s

Let us now consider electron interaction and transport in
the concentric tubessor shellsd in a MWCNT. Yoonet al.29

have argued theoretically that the intershell tunneling of elec-
trons is vanishingly small between both commensurable and
incommensurable long defect-free MWCNT’s. Lack of inter-
tube tunneling is also expected in nanotube ropes.30 Further-
more, Aharonov-Bohm experiments5 indicate that current
only flows in the outer tube in a MWCNT. Another experi-
ment by Collinset al.31 supports this picture and finds no
leakage between the shells in the low-bias limit. This is con-
cluded by removing the shells in a MWCNT one by one and
measuring the gate voltage response of the remaining
MWCNT after each shell removal. Other shell removing ex-
periments have also been reported.32–35 Furthermore, Cum-
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ings and Zettl36 have demonstrated relative motion between
the inner and outer shells in a MWCNT, indicating that the
shells are weakly coupled by van der Waals forces. In addi-
tion to Yoonet al.29 also other theoretical papers have calcu-
lated the intershell resistance using tunneling as theonly
mechanism.37–45 For example Roche and co-workers37–39

have considered the time evolution of a wave packet initially
on the outer tube in a disorder-free MWCNT including tun-
neling in a tight-binding approximation. This is not in con-
trast to Ref. 29 due to the localization of the wave packet of
Refs. 37–39.29 Using density functional theorysDFTd, Hans-
son and Stafström41 consider concentric armchair tubes and
find no essential change in the conductance steps for a bal-
listic MWCNT, when the intershell tunneling is turned on
and off. References 42 and 43 also model intershell tunneling
by DFT. Very recently, experiments with a MWCNT with 11
contacts on the outer tube, where a current is driven though
some of the tube and a voltage drop is measured elsewhere
on the tube, have been published.46 Using a transmission line
model, information about the intershell conductance is de-
duced.

In the present paper, we approach the intershell resistance
in a MWCNT from a different point of view: We consider
the intershell resistanceR21 from the electron-electronse-ed
interaction between the shells neglecting tunneling, i.e., in a
Coulomb drag configuration. In general, Coulomb drag47,48

means that moving charges in one subsystemsthe drive sub-
systemd exchange momentumsand other quantum numbersd
with carriers in a nearby subsystemsthe probe or drag sub-
systemd, thus exerting a drag force on the probe, inducing a
current, or a voltage, in the probessee Fig. 1d. Here the
intershell or transresistanceR21=V2/ I1 is found as a function
of gate voltagesi.e., Fermi level«Fd and temperatureT, vary-
ing the chirality of the inner and outer tubes. Once the
chiralities of the tubes are chosen, our theory has no remain-
ing free parameters. Coulomb drag is a unique transport
measurement in the sense that theR21 is dominated by the
intershell Coulomb interaction.49 Therefore serious attention
to the intershell Coulomb matrix element and the use of
proper Bloch states of the individual tubes is necessary. As
will be seen below, the effects of including the band structure
sand the underlying symmetries of the constituent nanotubesd
are absolutely crucial, leading to orders-of-magnitude
changes in the intershell resistance, occasionally also revers-

ing its sign. Furthermore, the present work also gives a new
source of friction against relative motion of concentric tubes,
which could be considered in the context of using
MWCNT’s as GHz nanomechanical oscillators.50

A direct measurement of the intershell resistance in a
Coulomb drag setupsFig. 1d requires independent contacts
on an inner and an outer tube, a difficult but possible tech-
nological achievement51 in light of the resent shell removal
experiments.31–35As a model, we consider two shells, but our
considerations can be extended for many shells. Also, a di-
rect growth of double wall tubes seems feasible.52

Coulomb drag has been an extremely successful tool in
studying interactions in coupled quantum wells53–58 snotably
in the quantum Hall regimes53,59d, and indeed it was realized
very early that Coulomb drag between Luttinger liquids
would be an important object to study.60–66 These studies
focused on Coulomb drag on either crossed or adjacent sub-
systems, and used very simple models for the Coulomb in-
teraction. Several interesting theoretical predictions emerged
from these papers, some of which may have been confirmed
experimentally.67 We work in the Fermi liquid framework
using Boltzmann equations. We think that it is important to
establish a clear picture of what one expects within this
simple model before turning to strongly interacting theories.
Note that our approach also gives valuable information about
drag between parallel tubes.

C. Nanotube Coulomb drag—qualitative features of the theory

As explained in detail in subsequent sections, the transre-
sistance or intershell resistanceR21 is computed from the
expression

R21 ~Eo sSRd2uV12u2AsTdFs1dFs2d, s1d

where the integration is taken over transferred momentum
and energy in the intershell interaction, and the summation
includes all involved bands and other quantum numbers re-
quired to specify the states.AsTd is a thermal factor,V12 is
the screened intershell Coulomb interaction, and the
F-functions for the two subsystems account for the available
phase-space for electronic scattering. Of crucial importance
is the factor SR accounting for the selection rulessor rather
suppression rulesd stemming from the intershell Coulomb

FIG. 1. sLeftd: The experimen-
tal setup to directly measure the
Coulomb drag effect in a
MWCNT. The intershell resis-
tance isR21=V2/ I1. sRightd: The
basic mechanism in the intershell
resistance in a drag configuration:
the intershelle-e interaction and
thereby momentum transfer to in-
duce the voltage dropV2.
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matrix element between the Bloch states.sIn the final for-
mula some SR is incorporated into theF functions.d As
known from experimental15 and theoretical68–70 studies,
backscattering between the linear bands in metallic tubes by
impurities with slowly varying potentials are strongly sup-
pressed leading to very long mean free paths. The selection
rules for intershell Coulomb interaction lead to a similar sup-
pression, which depends strongly on the inner and outer
tubes’ chirality. A detailed analysis of these effects is one of
the central tasks of the present article. The structure of Eq.
s1d is much richer than its counterparts’ for coupled quantum
wells due to the rather complicated band structure combina-
tions of the various MWCNT’s.

II. CARBON NANOTUBE BAND STRUCTURE

In Appendix A, we give a detailed account for the band
structure of a SWCNT with chiralitysn,md, since it turns out
to be of crucial importance to the intershell Coulomb matrix
element and thereby also for the drag. Here we only outline
the important points of the band structure used later. The
carbon nanotube band structure can be found by applying
periodic boundary conditions to the band structure of a single
graphite layersgraphened. Graphene has two atoms in the
primitive unit cell, so the tight-binding statesor Wannier de-
compositiond have two components with weightsa and b
fsee Eq.sA5dg. When applying the periodic boundary condi-
tion the wave vector component around the tubekc becomes
quantized into discrete values,kc=s2p / uCudnc. However, it is
important to realize thatnc is not the crystal angular momen-
tum m stemming from the rotation symmetry, but only re-
lated to it bync=m smodnd. fHereC is the chiral vector and
n is the greatest common divisor ofsn,md, n=gcdsn,md.g
This is due to the nonprimitiveslarged nanotube unit cell,
when using translational symmetry instead of helical
symmetry.71,72

Linearizing the tight-binding band structure around the
Fermi level«F=0 the states and bands for metallic tubes near
«F become

«KT

j = jv0KT, s2d

Sa

b
D

j,§
=

1
Î21− j

ism− nd − §Î3sn + md

2În2 + m2 + mn

1
2 , s3d

whereKT is the wave vector along the tubemeasuredfrom
the point, where the band crosses«F=0 sKT=k−k«F=0d, j
= ±1 is the sign of the velocity in the band and§= ±1 de-
scribes whichK § point of graphene the linear band originate
from. Here v0=sÎ3g0a/2"d with g0.3 eV anda;Î3ac-c

sac-c=0.142 nmd. The metallic states can thus described by
sk,j ,§d. Using this, we canclassify all metallic tubes into
two categories: zigzaglike (ZL) and armchairlike (AL) tubes,
with the following bands near the Fermi levelsshown on Fig.
2d:

zigzaglike:«km
j = j"v0k, m P hma,mbj s4d

armchairlike:«k
P = − P"v0suku − k0d, m = 0. s5d

HerekP g−p / uT u ,p / uT ug is the wave vector along the tube,
k0=2p /3uT u andT is the translational vector generating the
translational symmetry. Note that two different tubes can
have differentuT u even though they belong to the same cat-
egory.P= ±1 originates fromj, but does not give the sign of
the velocity, and for asn,nd tube P is the parity in the
cylindrical angle.73,74 The linearity of the bands near the
Fermi level is, of course, well known, but it is important to
recognize the entirely different angular momentum quantum
numbersm that characterize the AL and ZL bands crossing
the Fermi level. Specifically, for AL tubes it always holds
that m=0, while for the ZL tube one has

ma =
2n + m

3
smodnd or mb =

2m+ n

3
smodnd. s6d

Note thatmaÞmb and ma, mb are never zero. There is a
one-to-one correspondence between§= ±1 and the crystal
angular momentum of the linear bands. We note that the
most commonly studied metallic zigzag and armchair tubes,
with indicess3n,0d andsn,nd, are of course special cases of
ZL and AL tubes, respectively.

III. INTERSHELL COULOMB INTERACTION

We next consider the Coulomb interaction between Bloch
statesukncl for electrons in different shells in a MWCNT.
Before calculating the Coulomb matrix element involving
products75 of Bloch states it is useful to consider the less
complicated problem of the impurity matrix element
kk8nc8uVsr dukncl. The essential assumption that we use in cal-
culating both the impurity and Coulomb matrix element is
that the potential is slowly varying on the scale of the inter-
atomic distance ac-c. In the case of impurity scattering this is
a fair assumption for an impurity held on the tube by van der
Waals forces as is often the case.76,77 For Coulomb interac-
tion between different shells it is also a good assumption,
since the electrons do not get close enough to experience the
1/r singularity.

The impurity matrix elementkk8uVsr dukl between the two
component Bloch statescksr d, Eq. sA5d sbefore applying
periodic boundary conditionsd, is

FIG. 2. The two categories of metallic nanotubes: armchairlike
sAL, leftd and zigzaglikesZL, rightd. The AL bands near«F=0 have
zero crystal angular momentumm=0 and P= ±1, where k0

;2p /3uT u. The ZL tubes have doubly degenerate bands crossing
«F=0, i.e., for eachj= ±1 we have eitherma=s2n+md /3smodnd
or mb=s2m+nd /3smodnd, wheremaÞmb fn=gcdsn,mdg. The thin
lines are the tight-binding bands near«F=0 for a sn,nd tube swith
uT u=ad and as3m,0d tube.
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kk8uVsr dukl

=
1

N
o

R,R8

e−ik8·R8+ik·R

3 Fak8
p ak E dr Cpsr − R8dVsr dCsr − Rd

+ ak8
p bk E dr Cpsr − R8dVsr dCsr − R − dd

+ bk8
p ak E dr Cpsr − R8 − ddVsr dCsr − Rd

+ bk8
p bk E dr Cpsr − R8 − ddVsr dCsr − R − ddG .

s7d

By using the assumption of slow variation ofVsr d we can
take the potential outside the integrals. The first and last
terms in the square brackets becomedR8,RVsRdsak8

p ak

+bk8
p bkd and the second and third terms are foundsincluding

a sumd by summing over the nearest neighbors to be
~s0fak8

p bkYsk8d+akbk8
p

Ypskdg. EquationsA7d definesYskd
ands0,0.1 is the overlap between neighboring orbitalsssee
Appendix Ad. Introducing the Fourier transform of the po-
tential Vskd and the reciprocal lattice vectorG we find

kk8uVsr dukl = gsk,k8d
1

Ao
G

Vsk8 − k + Gd, s8d

whereA is the surface area and theg factor is

gsk,k8d ; akak8
p + bkbk8

p + s0fak8
p bkYsk8d + akbk8

p
Ypskdg,

s9d

i.e., the matrix element is essentially the plane wave result
times a band structure factor, which we will refer to as the g
factor.

To obtain the matrix element for the screened Coulomb
interactionVsr 1,r 2d ssuppressing the frequency argumentv
in the notationd we note that kk18k28uVsr 1,r 2duk1k2l
=kk28ukk18uVsr 1,r 2duk1luk2l, where i =1,2 labels the outer/
inner tube, respectively. Therefore we can use the impurity
potential result, Eq.s8d, to obtain

kk18k28uVsr 1,r 2duk1k2l

= g1sk1,k18dg2sk2,k28d

3
1

A1A2
o

G1,G2

Vsk18 − k1 + G1,k28 − k2 + G2d,

s10d

where we have ag factor for each system and the screened
potential is Fourier transformed separately in bothr 1 andr 2.

For a sn2,m2d tube inside asn1,m1d tube the screened
Coulomb matrix element is found using cylindrical coordi-
natesr =sr ,u ,zd to be

kk18nc1
8 k28nc2

8 uVsr 1,r 2duk1nc1
k2nc2

l =
1

s2pLd2g1sk1nc1
,k18nc1

8 dg2sk2nc2
,k28nc2

8 d o
G1,G2

o
u1,u2PZ

Vsk18 − k1 + G1,m18 − m1 + n1u1,k28 − k2 + G2,m28 − m2 + n2u2,r1,r2d, s11d

where L is the length of tubes,ni =gcdsni ,mid, Gi

=s2p / uT iuds ssPZd, andr i is the radius78 of tube i.
We will also need the unscreened Coulomb matrix ele-

ment V0, which is a function of the interparticle distance
ur 1−r 2u, i.e., a function ofz1−z2, u1−u2, r1, and r2, so we
Fourier transform in the differencesz1−z2 andu1−u2. There-
fore this matrix element is

kk18nc1
8 k28nc2

8 uV0sur 1 − r 2uduk1nc1
k2nc2

l

=
1

2pL
g1sk1nc1

,k18nc1
8 dg2sk2nc2

,k28nc2
8 d

3 o
G1,G2

o
u1,u2PZ

V0sk18 − k1 + G1,m18 − m1 + n1u1,r1,r2d

3 dk1+k2,k18+k28+G1+G2
dm18+m28+n1u1,m1+m2+n2u2

. s12d

Note that the6 in the states Eq.sA11d fthe j index for

metallic states Eqs.s2d ands3dg is suppressed in the notation
and thatthis index only appears in the g factorsin both Eqs.
s11d ands12d. Here we have used the crystal angular momen-
tum difference in the Fourier transforms instead of thenc
difference, since this is the physicalscrystald angular mo-
mentum being transferred.79 Note that we have included um-
klapp scattering and that the unscreened interaction Eq.s12d
has crystalsangulard momentum conservation. Similar ma-
trix elements were considered by Uryu.44

A. The g factor and backscattering in metallic tubes

We now consider theg factors and show that they contain
essential information about the electronic scattering. Theg
factor for anysn,md metallic tube for the scattering process
sk,j ,§d→ sk8 ,j8 ,§8d between the metallic states, Eq.s3d, is
found by inserting Eq.sA10d swith K=KT T / uT ud and Eq.s3d
into Eq. s9d:
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gsk,§,j;k8,§8,j8d =
1

2
sjj8fn,m,§,§8 + 1d − s0

Î3asj8KT8 + jKTd
4

,

s13d

where we introduced

fn,m,§,§8 = d§,§8 −
n2 + m2 + 4mn

2sn2 + m2 + mnd
s1 − d§,§8d

+ i
Î3§sm2 − n2d

2sn2 + m2 + mnd
s1 − d§,§8d. s14d

Theg factor in Eq.s13d has two terms: The first parentheses
is the important wave vector independent scalar product of
s a

b
d from Eq. s3d and the second term is a wave vector de-

pendent correction termsof first order ins0,0.1d.
As we shall show in Sec. IV, only backscattering contrib-

utes to the Coulomb drag in metallic tubes and we therefore
need to consider all possible backscattering processes
sj=−j8d in any metallic tube. Due to the double degeneracy
of the zigzaglike bands Eq.s4d at the Fermi level, we must
consider backscattering both with and without crystal mo-
mentum exchangesFig. 3, center and left panels, respec-
tivelyd.

If §=§8, thenDm;m8−m=0 and from Eq.s13d we have

ugsk,§,j;k8,§,− jdu = s0

Î3auk8 − ku
4

, s15d

which is of order 10−2 or less for scattering around the Fermi
level, i.e. for uk8−ku.2u«Fu /"v0 the g factor is ugu
=s0u«Fu /g0&10−2 for u«Fu&0.3 eV. If §=−§8 then uDmu
= uma−mbuÞ0 and for backscattering around the Fermi level
the g factor squared is80

ug«,«F
u2 .

1

4
S1 +

n2 + m2 + 4mn

2sn2 + m2 + mndD
2

+
3

16
S m2 − n2

n2 + m2 + mn
D2

,

s16d

which is 3
4 for sn,0d, 1 for sn,nd and in between for all other

tubes. So in a zigzaglike tube we havetwo kinds of back-
scattering with small crystal wave vector exchange q
,2«F/"v0 fand thereby largeVsq,Dmdg: Either Dm=0 and
ugu&10−2 or DmÞ0 andugu,1. Note that the larger theDm
the smallerVsq,Dmd. Even thoughVsq,Dmd is large the
small g factor suppresses theDm=0 backscattering.

Consider now armchairlike tubes where the bands cross-
ing «F=0 all havem=0, so the small crystal wave vector
transfer around ±2p /3uT u have§=§8 and therefore theg fac-
tor is the same as in Eq.s15d, i.e., ugu&10−2 suppresses this
kind of backscatteringfFig. 3 srightdg. If we on the other
hand have a large crystal wave vector transfer backscattering
fFig. 3 srightdg, then§=−§8 and theg factor of order 1 from
Eq. s16d is used. So the large crystal wave vector back-
scattering is most important, since the Fourier transform does
not grow enough to compensate for the smallg factor.

Ando et al.68,69 have used thek·p approximation to con-
sider backscatteringsfrom impuritiesd in metallic tubes and
found a result similar to Eq.s9d, but without thes0 term. The
small wave vector transfer backscattering was found to be
small in these papers. Klesse70 has found similar results for
scattering in nanotubes; see also Ref. 15 for some experi-
mental evidence of lack of backscattering in metallic tubes
compared to semiconducting ones.

B. Screening effects using the random phase approximation

In Appendix B, we derive the screened Coulomb interac-
tion in the random phase approximationsRPAd including the
carbon nanotube band structure with the result

kk18m18j18,k28m28j28uVsr 1,r 2,vduk1m1j1,k2m2j2l

=
1

2pL
g1sk1§1j1,k18§18j18dg2sk2§2j2,k28§28j28d

3 o
G1,G2

o
u1,u2PZ

V0sk18 − k1 + G1,m18 − m1 + n1u1,r1,r2d
e12sk18 − k1,m18 − m1,vd

3dk1+k2,k18+k28+G1+G2
dm18+m28+n1u1,m1+m2+n2u2

, s17d

where e12sq,Dm ,vd is the dielectric function disregarding
the umklapp processesfsee Eq.sB10dg. Note that the effec-
tive noninteracting polarizationxeff,i

0 sq,Dm ,vd, Eq.sB8d, en-
tering the dielectric function contains theg factors. For arm-
chairlike tubesxeff,i

0 sq,Dm ,vd is given explicitly in Eqs.
sB12d and sB13d. The bare Coulomb interaction for a cylin-
drical geometry is

V0sq,Dm,r i,r jd =
e2

e0
IDmsqridKDmsqrjd, r i ø r j , s18d

where IDmsxd fKDmsxdg is the modified Bessels functions of
the first fsecondg kind of order Dm and e0 is the vacuum
permittivity.

FIG. 3. The possible backscattering processes inany metallic
tube with a slightly raised Fermi level«F. Left: Backscattering in a
zigzaglike tubewithout crystal angular momentum changeDm=0
si.e., §=§8d and a small wave vectoruk8−ku,2«F/"v0 change,
which is suppressed byg&10−2 from Eq.s15d. Center: Backscatter-
ing in a zigzaglike tubewith crystal angular momentum change,
which haveg,1 from Eq.s16d. Herem̄ denotes the opposite ofm
in the sethma,mbj. Right: Two types of backscattering in armchair-
like tubes: sid A large wave vector transfersfor §=−§8d between
states with the same crystal angular momentumsm=0d and g,1
fEq. s16dg and sii d a small wave vector transferq.2«F/"v0 sup-
pressed byg&10−2. Note that the distance between the points
±2p /3uT u are not to scalesi.e., 2«F/"v0!4p /3uT ud and that the
armchairlike bands are connected as in Fig. 2.
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IV. THE TRANSRESISTANCE MODEL

The transresistanceR21 is now found fordiffusive nano-
tubes using two coupled Boltzmann equationssi.e., Fermi
liquid theoryd in linear response to the applied electric field
E1 and for weak coupling between the tubes. The derivation
is a generalization of Refs. 55 and 81–83sused to study
bilayer systemsd to the case of several general bands. We
only sketch the derivation and the details can be found in
Chap. 3 of Ref. 80. In order to simplify the notation we use
n as a collection of band indices for the tube. A similar for-
mula of R21 can also be found using the Kubo formula and
doing perturbation theory to second order in the intertube
interactionsthe first order dc contribution is zerod.84

The coupled linearized Boltzmann equations for the non-
equilibrium distribution functionsf iski ,nid si =1,2; seeFig.
1d are

e1E1

"

]f0s«k1n1
d

]k1
= −

f1sk1,n1d − f0s«k1n1
d

t1
, s19d

e2E2

"

]f0s«k2n2
d

]k2
= −

f2sk2,n2d − f0s«k2n2
d

t2

+ Sff1, f2 = f0gsk2,n2d, s20d

where a simple relaxation time approximation is used for the
impurity scattering,85 ei is the carrier charge in subsystemi
andSff1, f2= f0g is the linearized collision integral coupling
the two subsystems/tubes. The assumption of weak intertube
interaction and small external electric fieldE1 were used to
linearize the equations and to only include the lowest-order
terms and therefore not have a collision integral on Eq.s19d.
The linearized collision integral issusing theH theorem85d:

Sff1, f2 = f0gsk2,n2d

= − o
s1s18s28

o
n1n18n28

o
k1,k18,k28PFBZ

ws1828;12df0s«k1n1
df0s«k2n2

d

3 f1 − f0s«k18n18
dgf1 − f0s«k28n28

dgfc1sk1,n1d − c1sk18,n18dg,

s21d

where the deviation from equilibriumcisk,nd was defined
though f isk,nd− f0s«knd; f0s«kndf1− f0s«kndgcisk,nd and
ws1828 ;12d is the transition rate for electron-electron scatter-
ing between the tubes found from the Fermi golden rule

ws1828;12d=
2p

"
ukk18n18k28n28uV12sur 1 − r 2uduk1n1k2n2lu2

3ds«k1n1
+ «k2n2

− «k18n18
− «k28n28

d

using the matrix element in Eq.s17d. To derive the transre-
sistanceR21=V2/ I1, we use the coupled Boltzmann equations
s19d and s20d with s21d and thatI2=0, since a voltmeter is
placed on subsystem 2.81 After some algebra80 we get

R21 =
"2

pe1e2n1n2kBT

L

s2pd2r1r2
o

G1G2

dG1,G2

3
1

s2pd2 o
n1n18n2n28

uJsn1n18,n2n28du
2

3 E
0

` dq

2p
E

0

`

dv
V12sq,n1,n18,vdV12

p sq + G1,n1,n18,vd
sinh2s"v/2kBTd

3 F
n1n18
s1d sq,vdF

n2n28
s2d sq,vd, s22d

whereni is the carrier density,

V12sq,n1,n18,vd =
V0sq,Dm,r1,r2d

e12sq,Dm,vd

from Eq. s17d, Jsn1n18 ,n2n28d are the selection rules for the
band indices such as crystal angular momentum and/or parity
sfor armchair tubesd conservation andF

nini8
sid sq,vd is the avail-

ablesq,vd-phase space for scattering in theith tube given by

F
nini8
sid sq,vd = −

eiti

"2mTr
sido

ks

sgnsvksni
− vks+qni8

d

3 ff0s«ksni
d − f0s«ks+qni8

dgugisksni,ks + qni8du
2,

s23d

where theks are the solutions to«kni
−«k+qni8

−"v=0 in the
first Brillouin zonesFBZd of subsystemi,

vkn =
1

"

]«kn

]k

is the velocity, sgnsxd gives the sign ofx fif x=0 then
sgnsxd=0g, and mTr

sid is the transport mobility, which is a
single subsystem property. Note that theF function is peri-
odic and odd inq.

Having stated this formula a few comments and interpre-
tations are in order. First, we note thatonly backscattering
processes contribute to the drag between metallic tubesin
the linearized band models, Eqs.s4d and s5d, since we only
have two velocities ±v0= ±Î3g0a/2" in the metallic bands,
and therefore the signum-function of the velocity difference
before and after the scattering event in theF function, Eq.
s23d, makes only backscatteringsi.e., vksni

=−vks+qni8
d contrib-

ute to theF function. In Sec. III A we therefore analyzed the
g factors for all possible backscattering processes in metallic
tubes. The interaction and sinh−2s"v /2kBTd are decreasing
functions ofq andv, respectively, so the importance of the
phase spacesi.e., theF functionsd in the integral decreases
from the origin. It is worth noting that the forward scattering
contribution, which for quadratic dispersion relation domi-
nates at higher temperatures,86 plays no role here. If we in-
cluded a curvature of the dispersion relation for the nano-
tubes, we would get a correction to the results presented
here. However, there is one subtlety hidden in this, because if
we consider Coulomb drag between short tubes, where the
distribution functions are not relaxed to the Galilean invari-
ant form assumed in Ref. 86, but is instead given by a two-
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step distribution function, the forward scattering does not
contribute to the Coulomb drag as shown in Refs. 87 and 88.

Second, we have used a quantum number independent
impurity relaxation timeti for each subsystem in Eqs.s19d
and s20d. The mobility mTr

sid can be shown to be proportional
to ti, i.e. mTr

sid~ti, from a single subsystem Boltzmann equa-
tion fsuch as Eq.s19dg. Therefore theF function, Eq.s23d, is
ti independent, so thetransresistance R21 is independent of
the impurity relaxation times. So in the quasiballistic regime
for largeti the transresistance is still formally correct. How-
ever, there has been some work on drag between ballistic
one-dimensional systems with free-electron-like bands using
Boltzmann equations, where almost identical transresistance
formula is found.89

As a last comment, we note that umklapp scattering is
only possible if the tubes are commensurable due to the
dG1,G2

function in Eq.s22d as also found in Ref. 82.

V. ELECTRON-HOLE SYMMETRY AND COULOMB DRAG

All nanotubes have an inherited electron-hole symmetry
from the graphene band structure for«F=0, which intuitively
means that there are as many electrons as holes for«F=0 sfor
the precise definition see Ref. 90; for a recent measurement
of electron-hole symmetry see Ref. 13d. So there will be an
equal amount of momentum transfer tosfromd the electrons
and holes and therefore no voltage difference will arise, i.e.,
R21=0, if one of the subsystems has electron-hole symmetry.
Formally, theF function can be seen to vanish at electron-
hole symmetry by usingf−m

0 s«d=1−fm
0s−«d safter doing the

sum over the band indicesd, wherem is the chemical poten-
tial. This has also been used to show howR21 can change
sign.82

Therefore, we predict thatby varying the Fermi levels

(either by gate voltage or doping) a dip (or peak) in R21 will
appear due to the electron-hole symmetry for all kinds of
tube combinations. For two concentric armchair tubesfs5,5d
in s10,10dg the transresistance as a function of«F is shown in
Fig. 4 sthe range of«F is chosen to correspond to typical
experiments6,76,77,91–93d. Note that we use the simplification
of having the same Fermi level in the two tubes in the nu-
merical calculation, but the situation for misaligned Fermi
levels is sketched in the inset of Fig. 4. As indicated in the
inset, we have the following scenario for increasing gate
voltage for«F

s1dÞ«F
s2d: First hole-holesh-hd scattering, then

one subsystem passes electron-hole symmetry, i.e.,R21=0,
afterwards e-h scattering until the other subsystem also
passes though the electron-hole symmetry point. The details
of the calculation are given below in Sec. VI A.

VI. COULOMB DRAG BETWEEN METALLIC TUBES

A. Drag between (real) armchair tubes

Let us begin by calculating the transresistance, Eq.s22d,
between two concentric realfi.e., sn,ndg armchair nanotubes,
which haveuT u=a independent ofn. The band indexn is
in this case the indexP= ±1 from Eq. s5d. To find the
F

PP8
sid sq,vd functions, Eq.s23d, we need the solutions of«k

P

−«k+q
P8 −"v=0 with the bands, Eq.s5d, and remembering that

«k
P should be made 2p / uT iu periodic by handsin order to find

two solutions and not only oned. The signum-function only
gives backscattering, which is expressed by step functions.
For intraband backscatteringP8=P we haveg.1 fEq. s16dg
and for interband backscatteringP8=−P we have ugu2
=s0

2f3saqd2/16g fEq. s15dg as found in Sec. III A. Therefore
the F functions are80 for 0,qøp / uT iu:

F−−
sid sq,vd = − CF

sidus− v + v0qd

3 H− F f0s«1d − f0S− «2 −
1

2
k0"v0DG

+ F f0s«2d − f0S− «1 −
1

2
k0"v0DGJ , s24d

with
«1 = s"/2dsv + v0q− 2v0k0d and«2 = s"/2dsv − v0q+ v0k0d,

F++
sid sq,vd = − CF

sidus− v + v0qd

3 H− F f0s«̃1d − f0S− «̃2 +
1

2
"v0k0DG

+ F f0s«̃2d − f0S− «̃1 +
1

2
"v0k0DGJ s25d

with
«̃1 = s"/2dsv + v0q− v0k0d and«̃2 = s"/2dsv − v0q+ 2v0k0d,

FIG. 4. The transresistance per lengthR21/L sin V /mmd as a
function of the Fermi level«F sin eVd se.g., a gate voltaged for equal
Fermi levels of the two tubes,«F=«F

s1d=«F
s2d. The temperature isT

=80 K sdottedd, T=150 K sdashedd, andT=300 K sfull lined. The
dip in R21 at «F=0 reflects the electron-hole symmetry at this point.
Inset: A sketch of the situation for misaligned Fermi levels«F

s1d

Þ«F
s2d as a function of gate voltagessee text for detailsd.
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F+−
sid sq,vd = − CF

sids0
23sqad2

16
usv − v0q + v0k0d

3 us− v − v0q + 2v0k0d

3 h− ff0s«18d − f0s− «28dg + ff0s«28d − f0s− «18dgj
s26d

and

F−+
sid sq,vd = − CF

sids0
23sqad2

16
us− v − v0q + v0k0d

3 h− ff0s«18d − f0s− «28dg + ff0s«28d − f0s− «18dgj,

s27d

where «18=s" /2dsv+v0qd and «28=s" /2dsv−v0qd and we
have calculated the common single subsystem prefactor

CF
sid ;

ẽiti

"2mTr
sid =

2«F + "v0p/uT iu
2s"v0d2 . s28d

It is important to note that the interbandF functions,F+− and
F−+, are heavily suppressed compared to the intrabandF
functions sshown in Fig. 5d by ugu2=s0

2f3saqd2/16g of order
&10−4 for backscattering around the Fermi level. Therefore,
including the tight-binding states in the Coulomb matrix el-
ement and not just in the available phase space for scattering
as in Ref. 94 is a very important effect.

In real armchair tubes theP index is a parity index in the
cylindrical coordinate73,74 and therefore the Coulomb matrix
element has the property

kk18P18k28P28uVsr 1,ur 2uduk1P1k2P2l

= P18P28P1P2kk18P18k28P28uVsr 1,ur 2uduk1P1k2P2l, s29d

i.e., the product of the parity is conserved in the interaction.
Since bothP= ±1 havem=0 there is no angular momentum
selection rule, so the only selection ruleJ in Eq. s22d is
JsP1,P18 ,P2,P28d=dP1P2,P18P28

, which reduces the number of
terms by a factor of two. SinceVsq,Dmd is parity indepen-
dent in Eq.s22d, then the sum over band indices foruT1u
= uT2u is

o
P1P2P18P28

FP1P18
FP2P28

dP1P2,P18P28

= sF++ + F−−d2 + sF+− + F+−d2 ; sFintrad2 + sFinterd2,

s30d

which defines the inter- and intrabandF functions.sFinterd2 is
of fourth order ins0q and therefore strongly suppressed com-
pared to Fintra even thoughFinter has a phase space for
smallerq andv. Fintrasq,vd is shown in Fig. 6.

We now have all the ingredients of the transresistanceR21:

FIG. 5. Contour plot of theF functions for the intraband scat-
tering for 0,q,p / uT u, «F.0 and the temperatureT=0.1TF. Note
the smearing by the Fermi functions due to the temperature on some
edges and the sharp edge atv=v0q from the step function
us−v+v0qd.

FIG. 6. Contour plot of theFintra function.Fintra gives the phase
space for intraband scattering insreald armchair tubes.Fintra is seen
for 0,q,p /a and is odd inq and should be repeated periodically
with 2p /a as a function ofq.

FIG. 7. The transresistance per lengthR21/L sin units of V /mmd versus temperatureT for T/TF sleftdg. The curves are obtained from a
numerical integration of Eq.s31d for a s5,5d in a s10,10d tube. Curves for four different Fermi levels«F=«F

s1d=«F
s2d si.e., gate voltages or

dopingsd are seen:«F=0.006 eVsTF=69 Kd sleft, dashed lined, «F=0.015 eVsTF=174 Kd sleft, solid lined, «F=0.15 eVsTF=1740 Kd sright,
dashed lined and«F=0.3 eV sright, solid lined. Note the difference in magnitude between the transresistancesR21.
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R21

L
=

"2

pe2n1n2kBT

1

2pr1r2
E

0

` dq

2p
E

0

`

dv
uV12sq,0,vdu2

sinh2s"v/2kBTd

3 hfFintrasq,vdg2 + fFintersq,vdg2j. s31d

A numerical integration yieldsR21 as a function of«F and the
temperatureT, shown in Figs. 4 and 7, respectively. The
transresistance per lengthR21/L is of the order a fewV /mm.
R21 is seen to be linear inT for T&0.4TF as also found for
free-electron-like bands.95 For higher temperatures the tran-
sresistance increases or decreases depending on the Fermi
level. Numerically, we find a factor of 106 difference be-
tween the contribution toR21 from Finter andFintra, so we can
conclude thatthe drag is due to the intraband backscattering
processes. The largest contribution to the integral is around
q=k0±2«F/"v0 ssee Fig. 6d, which corresponds to umklapp
scattering processes around the Fermi level, e.g.,k=k0
−«F/"v0 and k8=−k0+«F/"v0 so q=k8−k+2p / uT iu=k0
+2«F/"v0.

Note that screening induced by the substrate could change
the magnitude of the transresistance a small amount, which
could be modeled20 by introducing a new dielectric constant
k=ere0 instead ofe0 in Eq. sB15d with er about 1 to 3.96 For
the present case, the magnitude ofR21 is changed&10%,
whener is increased from 1 to 3.

The transresistance depends on the radii of the tubes only
via the bare Coulomb interaction Eq.sB15d. Figure 8 shows
that R21 decreases exponentiallysfor n&25d when keeping
the inner armchair tube at a fixed radius and increasing the
outer tube radius. For parallel two-dimensional electron
gasesR21 was found to depend on the separationd as55 R21
~d4.

B. Drag between armchairlike tubes

For two general armchairlike tubes, we do not have a
parity selection rule and in generaluT1uÞ uT2u as seen in the
Table in Appendix A. Therefore we have no selection rules,
but all other terms thanFPP

s1d F
P8P8
s2d are of higher order in

ss0qd2 and therefore small, i.e.,

o
P1P2P18P28

F
P1P18
s1d F

P2P28
s2d . F++

s1dF++
s2d + F−−

s1dF−−
s2d + F++

s1dF−−
s2d

+ F−−
s1dF++

s2d + O„ss0qd2
… s32d

as for thesreald armchair tube case Eq.s30d. TheF−−
sid andF++

sid

are the same as those found in Sec. VI A and shown in Fig.
5 except thata is replaced byuT iu sbut not in theg factord.

SinceuT1u anduT2u are differentsin generald, it is harder to
conservescrystald momentum near the Fermi level for the
dominant backscattering process with momentum transferq
.k0

sid±2«F/"v0 with k0
sid=2p /3uT iu. However, for some val-

ues ofuT1u anduT2u it is possible to conserve momentum near
the Fermi level, which gives rise to peaks inR21, e.g., at
uT1u / uT2u=1 as seen in Fig. 9. The peaks on both sides of
uT1u / uT2u=1 are

U uT2u − uT1u
uT1uuT2u

U =
6«F

p"v0
, s33d

corresponding tok0
s1d±2«F/"v0=k0

s2d72«F/"v0 fsee insetsad
in Fig. 9g. These peaks haveR21,0, since they correspond
to a resonance between a electronlike and a holelike back-
scattering in the sense that a holelikeselectronliked back-
scattering takes place in a holelikeselectronliked band with
sgnsvkd=−sgnskd ssgnsvkd=sgnskdd in the FBZ. The peaks
around uT1u / uT2u= 1

2 and 2 are found in the same way by
taking the backscattering processesq.2k0

sid±2«F/"v0 into
account. If the radii of the tubes are different, then the mag-
nitude of R21 will change ssee Fig. 8d, but the signs and
positions of the peaks are the same. The peaks are broadened

FIG. 8. The transresistance per lengthR21/L versus radiussr
~nd for armchair tubes. The different outer and inner armchair
tubes are: As5,5d in a sn,nd sdotsd, a s6,6d in a sn,nd strianglesd and
a s9,9d in a sn,nd sstarsd. The radius of the outer tube is:r
=Î3a/2pn for a sn,nd tube. HereT=300 K and «F

s1d=«F
s2d=«F

=0.3 eV is used. Note the logarithmic scale.

FIG. 9. The transresistance per lengthR21/L as a function of the
ratio of the translational vectors lengthuT1u / uT2u for two armchair-
like tubes. The peaks corresponding to different scattering processes
are seen as explained in the text. Numerically, we useuT2u=a, radii
as for a s5,5d in a s10,10d tube, T=300 K and «F

s1d=«F
s2d=«F

=0.3 eV. If the tubes have a different radius, only the magnitude of
the peak is changedssee Fig. 8d. Insetsad: The scattering processes
in tube 1 and 2 leading to the peak atuT1u / uT2u.1.28. Note that the
backscattering processes are electronlike and holelike, respectively,
so R21,0. Insetsbd: Peaks arounduT1u / uT2u=1/2. Note the differ-
ence in scale.
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by increasing temperature and the positions of the peaks de-
pend on «F as seen, e.g., from Eq.s33d sexcept for
uT1u / uT2u= 1

2, 1, and 2d. The situation of varyinguT1u anduT2u
is similar to varying the densities in the parallel two-
dimensionals2Dd systems.81 Note that if we have a tube
configuration corresponding to a negative dip in Fig. 9sR21

,0d, then this tube configuration will have a peak instead of
a dip as a function of the gate voltage. Summarizing, the
Coulomb drag between armchairlike tubes is strongly depen-
dent on the magnitude of the translational vectorsuT1u and
uT2u and can lead to both negative and positive transresis-
tance.

C. Drag between zigzaglike tubes

Consider the drag between two zigzaglike tubes, where
the n index is j= ±1 and mP hma,mbj from Eq. s4d. The
backscatteringF function, F

jm,−jm8
sid , has a form similar to

FP,−P
sid for armchairlike tubesfEqs.s26d ands27dg, where the

important part is the backscattering around smallq
.2«F/"v0. This backscattering can be both withsDmÞ0d
and withoutsDm=0d exchange of crystal angular momentum
with the g factors

ugsDm = 0du2 ~ ss0aqd2 and ugsDm Þ 0du2 . 1 s34d

found in Sec. III A. Since there is crystal angular momentum
conservation97 it depends on the combination of the zigzag-
like tubessand theirma andmbd whether theDmÞ0 back-
scattering is possible or not, so we havetwo very different
cases.

s1d If DmÞ0 is not possible, then onlyDm=0 back-
scattering forq.2«F/"v0 is present, but this is strongly sup-
pressed by the smallg factor and so is the drag. So in this
case the small wave vector transfer forward scatteringsfor
nonlinearized bandsd could become important, but in any
case the effect is small. An example is the drag between two
sreald metallic zigzag tubesssee Table Id.

s2d If DmÞ0 is possible, then this process is the domi-
nant, even though there is a small suppressionscompared to
the g factord from havingDmÞ0 in the Fourier transform
V12sq,Dm ,vd, which is smaller the largerDm. An example
is a s12,15d in a s15,18d, which has an angular momentum
exchange ofDm= ±1.

Furthermore, there are no peaks inR21 as a function of
uT1u / uT2u as for the armchairlike tubes, since the transferred
crystal wave vectorq. ±2«F/"v0 is independent ofuT iu.
From the same principles as used above, we find the drag
between zigzaglike and armchairlike tubes to be strongly
suppressed.

VII. COMMENTS ON THE DRAG BETWEEN
SEMICONDUCTING TUBES

If the Fermi level for a semiconducting tube is shifted into
the conductionsor valenced band, then the drag processes are
within a single bandsi.e.,Dm=0d similar to a quadratic band
for small tubes, where there are few bands with large sepa-
ration. Here both the smallq forward scattering and the large

q backscattering processes will contribute to the drag. We
can calculate theg factors in the same way as for the metallic
tubes and for intraband scattering they are of order one.
However, the magnitude of the backscattering momentum
transfer around the Fermi level has to be approximately the
same in the two tubes in order to satisfy momentum conser-
vation. In general, this isnot the case.

If we deal with larger tubesmore bands can come into
play and thereby more scattering possibilities appear than
captured in the single band quadratic modelssee Ref. 70 for
a discussion on scattering in larger MWCNT’sd. This is also
the case of larger metallic tubes. Coulomb drag in the qua-
dratic model with more bandsswith different angular mo-
mentum along the tubed for tubes of semiconducting material
is considered in Ref. 98.

VIII. SUMMARY

We have considered the intershell resistanceR21 originat-
ing from the intershell Coulomb interaction neglecting tun-
neling, i.e., in a Coulomb drag configuration. For any tube
combination we predict a dip or peak inR21 as a function of
gate voltage, which could be experimentally observable. The
dip sor peakd is due to theelectron-hole symmetryof the
carbon nanotube band structure. WhetherR21 has a dip or
peak depends on the sign ofR21, when both systems have
Fermi levels above the electron-hole symmetry point.

The order of magnitudeand sign of R21 were found to
depend crucially on the chirality and Fermi level mismatch-
ing of the two tubes. The order of magnitude ofR21 can
reach,50 V /mm under favorable circumstances. The origin
of the drastic change in magnitude between different chirali-
ties is the suppressed backscattering due to the Coulomb
matrix element between Bloch states combined with the mis-
matching of wave vector and crystal angular momentum
conservation near the Fermi level. The intershell resistance
R21 was found to be linear in temperature for low tempera-
turesscompared toTFd, just as for a single quadratic band. To
facilitate the analysis, we classifiedall metallic tubes in two
categories: zigzaglike or armchairlike, and described their
crystal angular momentum properties.

Throughout the paper, we use Fermi liquid theory to de-
scribe the Coulomb drag in the MWCNT’s, which gives a
benchmark result for comparison to future experiments and
Luttinger liquid theories of drag in MWCNT’s. The effects
considered in this paper should be helpful in interpreting
future measurements of the intershell resistance.
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APPENDIX A: ENERGY BAND STRUCTURE OF THE
CARBON NANOTUBES

We will now give a rather detailed discussion of the band
structure of carbon nanotubes, since the intershell Coulomb
interaction matrix element depends critically on the Bloch
states of the two tubes due to the two atomic unit cellsof a
graphite layerd as seen in Sec. III. The carbon nanotube lat-
tice can be thought of as a wrappingsi.e., a conformal map-
pingd of a graphite layer into a tube. The wrapping is pre-
formed such that the chiral vectorC=na1+ma2 becomes the
circumferential of thesn,md nanotube and this determines
the lattice completely.99,100 fHere a1=sa/2dsÎ3,−1d and a2

=sa/2dsÎ3,1d are graphene lattice vectors anda= uaiu
=Î3ac-c, whereac-c is the interatomic distance.g

Any sn,md nanotube lattice has three symmetries: A dis-
crete translational symmetry along the tube, a discrete rota-
tional symmetry around the tube axis, and a helical symme-
try si.e., a screw operationd. These symmetries gives rise to
the three corresponding quantum numbers:k scrystal wave
vector along the tubed, m sthe crystal angular momentum
component along the tubed, andk shelical quantum numberd.
Only two of these symmetriessquantum numbersd are
needed to label the eigenstates, since the symmetries are not
independent.72 Conventionally translational symmetry is
used to label the states, but this does not use the smallest
possible unit cell and can therefore give many bands in the
FBZ with the same angular momentum.

Any carbon nanotube can be generated from a primitive
two atomic unit cell using only discrete rotations and discrete
screw operations and thereby givingsgeneralizedd Bloch
statesukml.71,72 The advantage of using this method is that
each energy bandsas a function ofkd has its own crystal
angular momentumm. The discrete rotational symmetry is
generated by the vectorCn alongC giving the smallest pos-
sible rotation leaving the lattice invariant, i.e.,

Cn =
n

n
a1 +

m

n
a2, where n = gcdsn,md, sA1d

i.e.,n is the greatest common divisor ofn andm. So a given
sn,md tube has crystal angular momentummP h0,1, . . . ,n
−1j. The disadvantage of using the symmetry adapted Bloch
statesukml is thatk is in the direction of the generatorH for
the helical symmetry, which in general is different for differ-
ent chiral vectors.

If we instead use thesoften muchd larger translational unit
cell the states can be labeled bykP g−p / uT u ,p / uT u g, where
T generates the translational symmetrysthe translational vec-
tord and is given by101

T =
s2m+ nda1 − s2n + mda2

gcds2m+ n,2n + md
. sA2d

Since we do not use the primitive unit cell in this case, but a
larger translational unit cell, we get a smaller FBZ and
thereby more bands in the FBZ than there are crystal angular
momentum quantum numbers.

The conventional way to obtain the band structure for a
isolated singlewallsn,md nanotube using the translational
unit cell is to apply periodic boundary conditions on the two
dimensional graphene tight-binding state102 cksr d along the
circumferentialC of the tube,99,100 i.e.,

cksr + Cd = eik·Ccksr d = cksr d ⇒ k ·C = 2pnc, sA3d

wherenc is an integer inh0,1,2, . . . ,N−1j with

N =
2sn2 + m2 + nmd

gcds2m+ n,2n + md
ù n

being the number ofstwo atomicd graphene unit cells in a
translational unit cell.101 Therebync labels the bandssas a
function ofkd using the translational unit cell. One disadvan-
tage of using this larger translational unit cell is, thatnc is not
the crystal angular momentum, but only related to the actual
physical crystal angular momentumm by

nc = m smodnd. sA4d

Furthermore, we can connect the description of the band
structure using the primitive unit cell and the translational
unit cell by k=k ·H, i.e., k depends on bothk andnc.

72 An
example is given in Fig. 10.

To do a tight-binding calculation for graphene102 it is es-
sential that the unit cell of graphene has two atoms, so the
tight-binding statesWannier decomposition of the eigenstated
has two components:103

cksr d =
1

ÎN
o
R

eik·RfakCsr − Rd + bkCsr − R − ddg,

sA5d

whereC is a 2pz orbital sWannier functiond localized at each
atom,R=n1a1+n2a2 sn1,n2PZd are lattice vectors,N is the
number of unit cells in the layer,d= 1

3sa1+a2d is the vector
between the two atoms in the unit cell andak, bk are func-
tions to be determined by the tight-binding calculation. To
find the energy we insertcksr d in Hcksr d=«kcksr d and ob-
tain a 232 matrix equation:

SH11 H12

H21 H22
DSak

bk
D = «kSS11 S12

S21 S22
DSak

bk
D , sA6d

whereHij , Sij are the overlap integrals with and without the
Hamiltonian found in the nearest neighbor tight-binding ap-
proximation to be

H12 = − g0s1 + e−ik·a1 + e−ik·a2d ; − g0Yskd, sA7d

S12 = s0Yskd, Sii = 1, Hii = «0, sA8d

where the value of the overlap integral isg0.3 eV, the
overlap of the orbitals are101 s0,0.1 and«0 is the energy of
the orbital, which is set to zero. Here the conventiong0,s0
.0 is used and note that others use slightly different values
se.g.,g0.2.5–3.1d.104–107By a diagonalization of Eq.sA6d
we find ffor YskdÞ0g
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«k
± = ± g0uYskdu, Sak

bk
D

±
=

1
Î217

Yskd
uYskdu
1

2 , sA9d

where we have neglecteds0 in the energysbut not in the
eigenstated. By insertingk decomposed along the tubesTd
and around the tubesCd: k =kT / uT u+kcC / uCu with kc

=s2p / uCudnc, one obtains the band structure for nanotube
labeled byk and nc. Essentially the same tight-binding cal-
culation can be done using only the helical and rotational
symmetry as in Ref. 71 and the same result is found, when
we usek=k ·H and Eq.sA4d to convert between the quan-
tum numbers108 ssee Fig. 10d.

The Fermi level is at«F=0, since half of the statess2pz
orbitalsd are filled. By doping and/or a gate voltage the Fermi
level can be moved about,±0.4 eV.6,76,77,91–93Furthermore
note that graphene has electron-hole symmetry90 for «F=0
and therefore so does anysn,md carbon nanotube.

1. The linearized band structure

We are only interested in the transport properties of nano-
tubes and therefore expandYskd around the Fermi level«F

=0, i.e., around the two zeros109 of Yskd,

K § =
2p

a
S 1

Î3
,§

1

3D s§ = ± 1d

and obtain

YsK § + Kd .
Î3a

2
siKx + §Kyd, sA10d

where we have introduced the deviation fromK § by
K;k −K §. Note thatuYsK §+Kdu.sÎ3a/2duKu usable in Eq.
sA9d. Furthermore, note that we do not expandY around
each individual«FÞ0 used, but around«F=0, since this pre-
serves the electron-hole symmetry of the band structure. By
insertingK=KTT / uT u+KCC / uCu into the periodic boundary
condition, Eq.sA3d, the energy is found to be

«KT,nc

± = ±
2"v0

D
ÎSKTD

2
D2

+ Snc −
sn + md + §

1
3sm− nd

2
D2

,

sA11d

where

D =
aÎn2 + m2 + mn

p

is the diameter andv0=Î3g0a/2" is the value of the velocity
in all metallic tubes.

2. Unified picture of metallic tubes: armchairlike
and zigzaglike tubes

We will now show using the linearizedY, Eq. sA10d, that
all metallic tubes are either zigzaglike or armchairlikeand
define the precise meaning of this. Ifsn−md /3PZ the sn,md
tube is metallic and has four crossings of the Fermi level
found from Eq. sA11d: two fthe 6 in Eq. sA11dg for
nc

§=+1=s2m+nd /3 and two s6d for nc
§=−1=s2n+md /3 si.e.,

KC=0d. This gives the energy and eigenstates for the bands
crossing the Fermi level:

«
KT,nc

§
j = j"v0KT, sA12d

Sa

b
D

j,§
=

1
Î21− j

ism− nd − §Î3sn + md

2În2 + m2 + mn

1
2 , sA13d

wherej= ±1. This is found by inserting the linearizedY, Eq.
sA10d, into Eq.sA9d and usingKC=0. By doing this straight-
forwardly, we get sgnsKTd in a and«~ ± uKTu, but we require
continuity of the statesfacross theY=0 point where Eq.
sA9d was not validg and remove the signum-function and
thereby also the absolute value, i.e., the metallic linear bands
cross the Fermi levels«F=0d. Note thata andb are indepen-
dent ofKT and therebyk sto first order inkd, which turns out
to be important in the Coulomb matrix element. The energy
bands cross the Fermi levels«F=0d at KT=0 and since
k=k ·T / uT u=KT+K § ·T / uT u the crossing of«F=0 as a func-
tion of k is at

FIG. 10. Left: Them=1 band for as5, 5d tube in the FBZ of the primitive unit cell as a function ofkP g−p ,pg. Center: Them=1 band
is pushed into the smaller FBZ of the translational unit cell by usingk=ka/2+ncp /5, with nc=1 andnc=6, sincem=1. Note that the band
is symmetrical aroundp /5, sincem=1. Right: The band structure for the translational unit cell. Both bands have crystal angular momentum
m=1, but indicesnc=1 andnc=6.
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K § ·
T

uT u
=5

− 2pn

gcds2n + m,2m+ nduT u
for § = + 1

2pm

gcds2n + m,2m+ nduT u
for § = − 1

h

sA14d

which are either both atk=0 sdouble degenerate,nc
§=±1d or

k= ±2p /3uT u snondegenerated for k in the FBZ, −p / uT uøk
øp / uT u ssee Ref. 80 for detailsd. Furthermore, we have the
following connection between the crossing of«F=0 and the
crystal angular momentum of the bands crossing:110 If the
bands are crossing«F=0 atk=0, then the two double degen-
erate crosses have different nonzero angular momentum,

ma =
2n + m

3
smodnd, mb =

2m+ n

3
smodnd sA15d

and maÞmb. If, on the other hand, the crossing is atk
= ±2p /3uT u, then both crosses havema=mb=0. This makes
it possible to divideall metallic tubes into either armchair-
like or zigzaglike tubesssee Fig. 2d with the following bands
crossing the Fermi levels«F=0d:

zigzaglike:«km
j = j"v0k, m P hma,mbj, sA16d

armchairlike:«k
P = − P"v0suku − k0d, m = 0, sA17d

where k0=2p /3uT u, j= ±1, P= ±1, and kP g−p / uT u ,
p / uT ug. The translational vectorT sand uT ud is different for
different metallic tubes independent of the type. Note that the
armchairlike bands are in general not connected in the way
modelled by Eq.sA17d fconsider, e.g., as7,4d tubeg, but since
they have the same angular momentumm=0 we connect the
bands in this way for convenience. For scattering between
the bands we will, however, consider the bands as four bands
as we saw in Sec. III. Examples of zigzaglike and armchair-
like tubes are found in Table I.

For asreald armchairsn,nd tube theP index in Eq.sA17d
is the parity in the angular coordinate in cylindrical
coordinates73,74 and the states ares a

b
d=s1/Î2ds P

1
d to all or-

ders ink sin the nearest-neighbor tight-binding approxima-
tiond. Results similar to the ones obtained from the linearized
Y, Eq. sA10d, can by found by using thek ·p approxi-
mation;111 however, this does not reveal the crystal angular
momentum.

APPENDIX B: SCREENING IN THE RPA APPROACH
INCLUDING THE BAND STRUCTURE

In this appendix, we will calculate the screened Coulomb
potential in the RPA in order to include both static and dy-
namical screening effects in the Coulomb drag, which have
been seen to be important perviously for bilayer
systems.55,56,81The Dyson equation for the screened potential
in real and frequency space is

Vsr 1,r 2,vd = V0sur 1 − r 2ud +E dr E dr 8V0sur 1 − r ud

3x0sr ,r 8,vdVsr 8,r 2,vd, sB1d

where the noninteracting polarizability is

x0sr ,t,r 8,t8d = − iust − t8dkfr̂sr ,td,r̂sr 8,t8dgl0, sB2d

wherer̂sr ,td is the density operator in the interaction picture
and the averagek¯l0 is taken for noninteracting particles.
By writing the density operator by the help of a complete set
of quantum stateshwhsr dj we find the polarizability to be

x0sr ,r 8,vd

= o
hh8

f0s«hd − f0s«h8d

«h − «h8 − v + i0+wh
psr dwh8

p sr 8dwh8sr dwhsr 8d

; o
hh8

x̃h,h8
0 svdwh

psr dwh8
p sr 8dwh8sr dwhsr 8d, sB3d

TABLE I. Examples of armchairlikesAL d and zigzaglikesZLd metallic tubes, i.e., all kinds of metallic
tubes. For the AL tubes the difference in the length of the translational vectorT and the diameterD is seen
and for the ZL tubes we note the variety of the crystal angular momentumma=fs2n+md /3g smodnd and
mb=fs2m+nd /3g smodnd of the bands crossing the Fermi levels«F=0d. Numerically, it turns out that
uma−mbu=1 for most of the ZL tubes, but there are other cases such as thes12, 24d tube. Remember that
n=gcdsn,md anda= uaiu.

Chirality Type ma mb n uT u /a D/a

sn, nd AL 0 0 n 1 Î3n/p

s7,4d AL 0 0 1 Î31 Î93/p

s15,6d AL 0 0 3 Î13 3Î39/p

s8,23d AL 0 0 1 Î259 Î777/p

s10,25d AL 0 0 5 Î13 5Î39/p

sn, 0d ZL 2n/3 n/3 n Î3 n/p

s9,6d ZL 2 1 3 Î57 3Î19/p

s6,21d ZL 2 1 3 Î201 3Î67/p

s18,12d ZL 4 2 6 Î57 6Î19/p

s12,24d ZL 4 8 12 Î21 12Î7/p
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where 0+ is a positive infinitesimal,f0s«d is the Fermi func-
tion andx̃h,h8

0 svd was introduced. To find the Coulomb ma-
trix element we insert the RPA equationsB1d into

k1828uVsr 1,r 2,vdu12l

=E dr 1E dr 2w18
p sr 1dw28

p sr 2dVsr 1,r 2,vdw1sr 1dw2sr 2d

sB4d

and get

k1828uVsr 1,r 2,vdu12l

= k1828uV0sur 1 − r 2udu12l

+ o
hh8

x̃h,h8
0 svdk18huV0sur 1 − r udu1h8l

3kh828uVsr 8,r 2,vduh2l. sB5d

This equation can be used for any set of quantum states and
in particular for the metallic states for nanotubes, soh is the
set of indicessi ,k,j ,§ ,sd, wherei =1,2 is thetube index,s
is the spin and remember that§ determines the angular mo-
mentumm. The screened and unscreened matrix elements,
Eqs.s11d ands12d, can now be inserted into Eq.sB5d to get
the screened matrix element. Doing this, we observe that
g1sk1§1j1,k18§18j18dg2sk2§2j2,k28§28j28d is a common factor,
which simplifies the result. To simplify further, we use thatgi
andx̃i

0 are periodic in the reciprocal latticeGi for subsystem
i, gsh ,h8d=gpsh8 ,hd and introduceqi ;ki8−ki, Dmi ;mi8
−mi and

Wi1i2
sq1,Dm1,q2,Dm2,vd ; o

Gi1
,Gi2

o
ui1

,ui2
PZ

Vsq1 + Gi1
,Dm1 + ni1

ui1
,q2 + Gi2

,Dm2 + ni2
ui2

,r i1
,r i2

d, sB6d

wherei1, i2 are tube indices andui1
,ui2

are integers. Equiva-
lently we introduceWi1i2

0 for the sum overV0 swithout the
g’s and the 1/2pL factord. So Eq.sB5d becomes

Wi1i2
sqi1

,Dmi1
,qi2

,Dmi2
,vd

= 2pLWi1i2
0 sqi1

,Dmi1
,qi2

,Dmi2
d

+ o
Gi1

ui1

o
i

V0sqi1
+ Gi1

,Dmi1
+ ni1

ui1
,r i1

,r id

3 xeff,i
0 sqi1

+ Gi1
,Dmi1

+ ni1
ui1

,vd

3Wii 2
sqi1

+ Gi1
,Dmi1

+ ni1
ui1

,qi2
,Dmi2

,vd, sB7d

which has a matrix structure in the reciprocal lattice and ini
and the effective polarization is

xeff,i
0 sq,Dm,vd =

2

2pL
o
k§

o
jj8

x̃i
0skj§,k + qj8§8,vd

3ugisk,j,§;k + q,j8,§8du2, sB8d

where §8 is chosen such thatm8=m+Dm. Note thatx̃0 is
diagonal in the tube indexi, since we do not include tunnel-
ling between the tubes. In order to find the screened inter-
shell Coulomb interaction we truncate Eq.sB7d and only
include theGi1

=0 andui1
=0 term in the sum, which gives us

a 232 matrix equationsin id to find W12, and therefore the
screened Coulomb matrix element is

kk18m18j18,k28m28j28uVsr 1,r 2,vduk1m1j1,k2m2j2l

=
1

2pL
g1sk1§1j1,k18§18j18dg2sk2§2j2,k28§28j28d

3 o
G1,G2

o
u1,u2

V0sk18 − k1 + G1,m18 − m1 + n1u1,r1,r2d
e12sk18 − k1,m18 − m1,vd

3dk1+k2,k18+k28+G1+G2
dm18+m28+n1u1,m1+m2+n2u2

, sB9d

with

e12sq,Dm,vd = f1 − xeff,1
0 sq,Dm,vdV0sq,Dm,r1,r1dg

3f1 − xeff,2
0 sq,Dm,vdV0sq,Dm,r2,r2dg

− xeff,1
0 sq,Dm,vdxeff,2

0 sq,Dm,vd

3V0sq,Dm,r1,r2dV0sq,Dm,r2,r1d, sB10d

where we have neglected the reciprocal lattice vectors differ-
ent from zero and therefore used

V0sqi1
,Dmi1

,r1,r2dW22
0 sqi1

,Dmi1
,qi2

,Dmi2
d

− V0sqi1
,Dmi1

,r2,r2dW12
0 sqi1

,Dmi1
,qi2

,Dmi2
d . 0.

If we consider armchair-like tubesfonly the linear bands
from Eq. sA17dg, then all the crystal angular momentum is
zero and from theg-factor analysis in Sec. III A the inter-
band transitionfP=1↔P8=−1 in Eq.sA17dg can safely be
neglected and for the intraband transition we haveg,1.
Therefore
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xeff,i
0 sq,0,vd =

2

2pL
o
k

o
P=±1

x̃i
0skP,k + qP,vd

; xeff,i
0 sq,vdP=+1 + xeff,i

0 sq,vdP=−1, sB11d

and for 0øqøp / uT u we find in the long tube limit and for
zero temperaturesT=0d

xeff,i
0 sq,vdP=+1

=
2

s2pd2FuSk0 −
«F

"v0
− qDv0qsk0 + 2«F/"v0d

v2 − v0
2q2

+ uSq − k0 +
«F

"v0
DH2v0qsq − p/uT ud

v0
2q2 − v2

+
1

2v0
lnSUv2 − v0

2sq − 2k0 + 2«F/"v0d2

v2 − v0
2q2 UDJ

+ uSq −
1

2
k0 −

«F

"v0
D 1

2v0

3lnSUv2 − v0
2sq − k0 − 2«F/"v0d2

v2 − v0
2q2 UD

+ uS1

2
k0 +

«F

"v0
− qD2v0qs 1

2k0 + «F/"v0 − qd
v0

2q2 − v2 G
sB12d

and

xeff,i
0 sq,vdP=−1

=
2

s2pd2"
FuSk0 +

«F

"v0
− qD2v0qsk0 + «F/"v0 − qd

v0
2q2 − v2

+ uSq − k0 −
«F

v0
D 1

2v0

3lnSUv0
2sq − 2k0 − 2«F/"v0d2 − v2

v0
2q2 − v2 UD

+ uS1

2
k0 −

«F

"v0
− qD2v0qsk0 + «F/"v0d

v2 − v0
2q2

+ uSq −
1

2
k0 +

«F

"v0
DH2v0qsp/uT u − qd

v2 − v0
2q2

+
1

2v0
lnSUv0

2sq − k0 + 2«F/"v0d2 − v2

v0
2q2 − v2 UDJG ,

sB13d

which for smallq andv simplifies to the result in112

xeff,i
0 sq,vdP=+1 = xeff,i

0 sq,vdP=−1 =
4v0q

2

s2pd2"sv2 − sv0qd2d
.

sB14d

Note that in the static limit the effective polarizability is just
a constant. The zero temperature approximation55 of the po-
larizability is good as long asT is much smaller thanTF,
which is often the case for nanotubessTF,1000 Kd. Includ-
ing finite temperature in the polarizability could give a plas-
mon enhanced drag as previously found for bilayer
systems56,57 at T.0.5TF. For zigzaglike tubes the effective
polarizability can be found in the same way, but for the linear
bands crossing the Fermi levels«F=0d we can—in contrast
to the armchairlike case—have bothDm=0 andDm= ± sma

−mbd.
The unscreened Coulomb interactionV0sq,Dm ,r i ,r jd can

be found from the Poisson equation by Fourier transforming
in the cylindrical coordinate and in the coordinate along the
tube, i.e.,80

V0sq,Dm,r i,r jd =
e2

e0
IDmsqridKDmsqrjd, r i ø r j ,

sB15d

where IDmsxd fKDmsxdg is the modified Bessel’s functions of
the first fsecondg kind of order Dm and e0 is the vacuum
permittivity. Note that the smallq limit is slogarithmicd di-
vergent only for the potential withDm=0. So we have all the
ingredients in the screened Coulomb matrix element between
different shells using the tight-binding states of the carbon
nanotubes, which is used to model the Coulomb drag be-
tween the shells.
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