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Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study
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2MIC-Department of Micro and Nanotechnology, Technical University of Denmark, @rsteds Plads,
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We calculate the intershell resistarieg in a multiwall carbon nanotube as a function of temperaiuaad
Fermi leveler (e.g., a gate voltagevarying the chirality of the inner and outer tubes. This is done in a
so-called Coulomb drag setup, where a curterih one shell induces a voltage drdp in another shell by the
screened Coulomb interaction between the shells neglecting the intershell tunneling. We provide benchmark
results forRy1=V,/1; within the Fermi liquid theory using Boltzmann equations. The band structure gives rise
to strongly chirality-dependent suppression effects for the Coulomb drag between different tubes due to selec-
tion rules combined with mismatching of wave vector and crystal angular momentum conservation near the
Fermi level. This gives rise to orders of magnitude changeBsinand even the sign oR,; can change
depending on the chirality of the inner and outer tube and misalignment of inner and outer tube Fermi levels.
However for any tube combination, we predict a dip peak in Ry; as a function of gate voltage, sin&g;
vanishes at the electron-hole symmetry point. As a by-product, we clasalfigdetallic tubes into either
zigzaglike or armchairlike, which have two different nonzero crystal angular momepta, and only zero
angular momentum, respectively.

DOI: 10.1103/PhysRevB.71.125408 PACS nuni®er73.63.Fg, 73.23:b

[. INTRODUCTION on the situation, but is still subject to debate. Also in ropes
the situation is not clear yét.

The structure of this paper is as follows. We begin by

Carbon nanotubes are widely recognized as being amongtroducing the intershell resistance problem in MWCNT's
the most promising materials for future nanotechnology apand our approach to it in Sec. | B. In Sec. | C we review the
plications. Furthermore, they are of fundamental scientifidasic qualitative features of our theory of the intershell resis-
interest due to several unique electronic, mechanical, antince using a Coulomb drag setup. Sections Il and Il are
thermal propertie$. These properties often depend on thedevoted to a summary of the band structure and a calculation
microscopic details of their composition, e.g., the way theof the screened Coulomb matrix element including the im-
graphene sheets are rolled into tubes and whether one hagartant suppression rules for backscattering in metallic tubes,
single or multiwall carbon nanotube or a rope or bundle ofand in Sec. IV we indicate how the standard transresistance
these. Electrical transport measurements have shown a teformulas are modified in the nanotube configuration. Sec-
dency for ballistic transport in individual singlewall carbon tions V-VII give our results for several different nanotube
nanotube%* (SWCNT) and diffusive transport in multiwall combinations. Details of the nanotube band structure and the
carbon nanotubé&s’ (MWCNT), but this issue is not com- screening model including the band structure are found in the
pletely settled yétand seems to depend crucially on the Appendixes.
contacts to the tubes and the amount of defects and impuri-
ties in and near the tube. Many experiménitzhave ex-
plored the Coulomb blockade regime, where the tube can be
treated as a quantum dot, due to poor electric contact. More Let us now consider electron interaction and transport in
recently, better electrical contacts have been achié¥&d® the concentric tubegor shell3 in a MWCNT. Yoonet al?®
which gives larger conductance, approaching the predictelave argued theoretically that the intershell tunneling of elec-
4¢/h, and a coherenfor Landauer-Biittiker-likeregime is  trons is vanishingly small between both commensurable and
thereby reached. Palladium seems to be a promising candincommensurable long defect-free MWCNT's. Lack of inter-
date for good future ohmic contacts'® Another interesting tube tunneling is also expected in nanotube roféurther-
feature of carbon nanotubes is their one-dimensional naturenore, Aharonov-Bohm experimeftsndicate that current
which may have profound consequences on the basic physinly flows in the outer tube in a MWCNT. Another experi-
cal phenomenology for their description: SWCNT’s havement by Collinset al3! supports this picture and finds no
been predicted to be Luttinger liquidg® and some experi- leakage between the shells in the low-bias limit. This is con-
mental evidence exists?2 even though other interpretations cluded by removing the shells in a MWCNT one by one and
have been suggestéd Whether MWCNT's are Fermi or measuring the gate voltage response of the remaining
Luttinger liquids has been investigated extensivelyMWCNT after each shell removal. Other shell removing ex-
experimentally*~26 and theoreticall{’ and seems to depend periments have also been reporféd® Furthermore, Cum-

A. General considerations on nanotubes

B. Intershell resistance in MWCNT's
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O,
The drive system FIG. 1. (Left): The experimen-
tal setup to directly measure the
9 L 7 Coulomb drag effect in a
O - MWCNT. The intershell resis-
7 7 tance isRy,;=V,/1;. (Right): The
7 basic mechanism in the intershell
The drag system resistance in a drag configuration:
the intershelle-e interaction and
KV\ thereby momentum transfer to in-
2/ duce the voltage drop’.

ings and Zetf® have demonstrated relative motion betweening its sign. Furthermore, the present work also gives a new
the inner and outer shells in a MWCNT, indicating that thesource of friction against relative motion of concentric tubes,
shells are weakly coupled by van der Waals forces. In addiwhich could be considered in the context of using
tion to Yoonet al?® also other theoretical papers have calcu-MWCNT’s as GHz nanomechanical oscillatéfs.
lated the intershell resistance using tunneling as dhby A direct measurement of the intershell resistance in a
mechanisnt/~*> For example Roche and co-work&rs® Coulomb drag setugFig. 1) requires independent contacts
have considered the time evolution of a wave packet initiallyon an inner and an outer tube, a difficult but possible tech-
on the outer tube in a disorder-free MWCNT including tun- nological achievemeftt in light of the resent shell removal
neling in a tight-binding approximation. This is not in con- experiments}—35As a model, we consider two shells, but our
trast to Ref. 29 due to the localization of the wave packet otonsiderations can be extended for many shells. Also, a di-
Refs. 37-39? Using density functional theor§DFT), Hans-  rect growth of double wall tubes seems feasile.
son and Stafstrofh consider concentric armchair tubes and  Coulomb drag has been an extremely successful tool in
find no essential change in the conductance steps for a badtudying interactions in coupled quantum w&s8 (notably
listic MWCNT, when the intershell tunneling is turned on in the quantum Hall regimé&%°9, and indeed it was realized
and off. References 42 and 43 also model intershell tunnelingery early that Coulomb drag between Luttinger liquids
by DFT. Very recently, experiments with a MWCNT with 11 would be an important object to stué®® These studies
contacts on the outer tube, where a current is driven thougfocused on Coulomb drag on either crossed or adjacent sub-
some of the tube and a voltage drop is measured elsewhesgstems, and used very simple models for the Coulomb in-
on the tube, have been publisifédJsing a transmission line teraction. Several interesting theoretical predictions emerged
model, information about the intershell conductance is defrom these papers, some of which may have been confirmed
duced. experimentally’’ We work in the Fermi liquid framework

In the present paper, we approach the intershell resistanagsing Boltzmann equations. We think that it is important to
in a MWCNT from a different point of view: We consider establish a clear picture of what one expects within this
the intershell resistand®,; from the electron-electrofe-e) simple model before turning to strongly interacting theories.
interaction between the shells neglecting tunneling, i.e., in &ote that our approach also gives valuable information about
Coulomb drag configuration. In general, Coulomb dfd§ drag between parallel tubes.
means that moving charges in one subsystira drive sub-
system exchange momenturfand other quantum numbers C. Nanotube Coulomb drag—qualitative features of the theory
with carriers in a nearby subsysteithe probe or drag sub-
system, thus exerting a drag force on the probe, inducing a
current, or a voltage, in the probsee Fig. 1 Here the
intershell or transresistané®,=V,/I, is found as a function
of gate voltagdi.e., Fermi leveky) and temperaturg, vary-
ing the chirality of the inner "and outer tubes. Once the R21MJE(SR)2|V12|2A(T)F(1)F<2), 1)
chiralities of the tubes are chosen, our theory has no remain-
ing free parameters. Coulomb drag is a unique transpomhere the integration is taken over transferred momentum
measurement in the sense that g is dominated by the and energy in the intershell interaction, and the summation
intershell Coulomb interactioff. Therefore serious attention includes all involved bands and other quantum numbers re-
to the intershell Coulomb matrix element and the use ofjuired to specify the statesl(T) is a thermal factory,, is
proper Bloch states of the individual tubes is necessary. Athe screened intershell Coulomb interaction, and the
will be seen below, the effects of including the band structurd=-functions for the two subsystems account for the available
(and the underlying symmetries of the constituent nanojubegphase-space for electronic scattering. Of crucial importance
are absolutely crucial, leading to orders-of-magnitudes the factor SR accounting for the selection rulesrather
changes in the intershell resistance, occasionally also reversuppression rulgsstemming from the intershell Coulomb

As explained in detail in subsequent sections, the transre-
stance or intershell resistan€®, is computed from the
expression
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matrix element between the Bloch statéls. the final for- w w
mula some SR is incorporated into the functions) As E,\g;‘ﬁl 2
known from experiment& and theoretic&-"° studies, AN
backscattering between the linear bands in metallic tubes by \ y \,/ik o
impurities with slowly varying potentials are strongly sup-  -r“R S ko T
pressed leading to very long mean free paths. The selection 4—o
rules for intershell Coulomb interaction lead to a similar sup- I=-
press!on,. W.h'Ch depends strongly on the inner a}nd outer FIG. 2. The two categories of metallic nanotubes: armchairlike
tubes’ chirality. A detailed analysis of these effects is one of . : ; _

- (AL, left) and zigzaglikgZL, right). The AL bands neasg=0 have
the_central tgsks of the present artlcle,. The structure of EQero crystal angular momentun=0 and =1, where ko
(1) is much richer than its cou_nterparts for coupled q“a”tF‘”% 27/3|T|. The ZL tubes have doubly degenerate bands crossing
v_veIIs due to th(_a rather comp,llcated band structure comblnas—on] i.e., for eacht=+1 we have eithem,=(2n+m)/3(mod n)
tions of the various MWCNT's. or my=(2m+n)/3(modn), wherem, # m, [n=gcdn,m)]. The thin
lines are the tight-binding bands negr=0 for a(n,n) tube (with
|T|=a) and a(3m,0) tube.

I. CARBON NANOTUBE BAND STRUCTURE

In Appendix A, we give a detailed account for the band armchairlike:e! = — Il7ivg(|K = ko), m=0. (5)
structure of a SWCNT with chiralityn,m), since it turns out _
to be of crucial importance to the intershell Coulomb matrixHerek e ]=/[T|,@/|T[] is the wave vector along the tube,
element and thereby also for the drag. Here we only outlin&o=27/3|T| andT is the translational vector generating the
the important points of the band structure used later. Thé&/anslational symmetry. Note that two different tubes can
carbon nanotube band structure can be found by applyingave differenfT| even though they belong to the same cat-
periodic boundary conditions to the band structure of a singl€90ry-11=*1 originates fron¥, but does not give the sign of
graphite layer(grapheng Graphene has two atoms in the the velocity, and for an,n) tube I is the parity in the
primitive unit cell, so the tight-binding stater Wannier de- ~ cylindrical angle’®"* The linearity of the bands near the
composition have two components with weights and 3~ Fermi level is, of course, well known, but it is important to
[see Eq(A5)]. When applying the periodic boundary condi- recognize the entirely different angular momentum quantum
tion the wave vector component around the tippecomes Numbersm that characterize the AL and ZL bands crossing
quantized into discrete valudg,=(27/|C|)n.. However, itis  the Fermi Ie\{el. Specifically, for AL tubes it always holds
important to realize that, is notthe crystal angular momen- thatm=0, while for the ZL tube one has
tum m stemming from the rotation symmetry, but only re- on+m om+n
lated to it byn,=m (modn). [HereC is the chiral vector and my= (modn) or my,=
n is the greatest common divisor ¢f,m), n=gcdn,m).] 3
This is due to the nonprimitivélarge) nanotube unit cell, Note thatm,# m, and m,, m, are never zero. There is a
when using translational symmetry instead of helicalone-to-one correspondence betwesn+1 and the crystal
symmetry' 172 angular momentum of the linear bands. We note that the

Linearizing the tight-binding band structure around themost commonly studied metallic zigzag and armchair tubes,
Fermi levele=0 the states and bands for metallic tubes neaith indices(3n,0) and(n,n), are of course special cases of

(modn). (6)

er become ZL and AL tubes, respectively.
e%, = fvoftr, ) lIl. INTERSHELL COULOMB INTERACTION
) = We next consider the Coulomb interaction between Bloch
o 1= gl(m_ n) —sv3(n+m) states|kn,) for electrons in different shells in a MWCNT.
( ) == 2yn% + m? + mn , (3) Before calculating the Coulomb matrix element involving
Bles N2 productg® of Bloch states it is useful to consider the less

1 complicated problem of the impurity matrix element
where &7 is the wave vector along the tulmeeasuredrom  (k'n/|V(r)|kn,). The essential assumption that we use in cal-
the point, where the band crosses=0 (f1=k-K..=0), £  culating both the impurity and Coulomb matrix element is
=+1 is the sign of the velocity in the band agd £1 de- thatthe potential is slowly varying on the scale of the inter-
scribes whichK pgint of graphene the linear band originate atomic distance @.. In the case of impurity scattering this is
from. Herevy=(\3y,a/2%k) with y,=3 eV anda=+3a.. a fair assumption for an impurity held on the tube by van der
(a..c=0.142 nm. The metallic states can thus described byWaals forces as is often the ca8€¢’ For Coulomb interac-
(k,&,s). Using this, we carclassify all metallic tubes into tion between different shells it is also a good assumption,
two categories: zigzaglike (ZL) and armchairlike (AL) tubes Since the electrons do not get close enough to experience the
with the following bands near the Fermi lewshown on Fig. ~ 1/r singularity.

2): The impurity matrix elementk’|V(r)|k) between the two
] ) ; component Bloch stateg(r), Eq. (A5) (before applying
zigzaglike: ey, = &ivgk, m € {my,mpy; (4 periodic boundary conditiopsis

125408-3
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k' |V(r)|k , L1 ,
volk) WMOK =gk k) TS VK -k+6), @
- = E —ik’-R’+ik-R G
R R where A is the surface area and tlgefactor is
. . o(k,k') = axay, + BB + Sol e B Y (K') + ane B, Y (K)],
X | o | dr ¥ (r =ROV(N)¥(r - R) ©

i.e., the matrix element is essentially the plane wave result
times a band structure factor, which we will refer to as the g
factor.

To obtain the matrix element for the screened Coulomb
interactionV(r,r,) (suppressing the frequency argument
in the notation we note that (kikj|V(ri,ry)lkqky)
+ BB f dr U (r =R’ = d)V(N¥(r -R—d) |. ;(k§|<ki|V(r1,r2)|k1>.|k2), where i=1,2 labels the quter/ '

inner tube, respectively. Therefore we can use the impurity

) potential result, Eq(8), to obtain

(kik5V(r 1,1 )|k 1k o)
= gl(kbk:ll)gZ(kZaké)

+ ay, By J dr ¥*(r -ROV(N¥(r —-R-d)

+ B e J dr W'(r -R" - d)V(n¥(r -R)

By using the assumption of slow variation ¥fr) we can

take the potential outside the integrals. The first and last 1 A 2 VI(ki—Ki+Gyky—ky+Gy),
terms in the square brackets becordg gV(R)(a;, 17726162

+,.Bx) and the second and third terms are foiiimtluding (10

a sum by summing over the nearest neighbors to bewhere we have g factor for each system and the screened
asol ey B Y (K') + ey B, Y*(K)]. Equation(A7) definesY(k)  potential is Fourier transformed separately in botandr .

andsy~0.1 is the overlap between neighboring orbitese For a (ny,,m,) tube inside a(n;,m;) tube the screened
Appendix A). Introducing the Fourier transform of the po- Coulomb matrix element is found using cylindrical coordi-
tential V(k) and the reciprocal lattice vect@ we find natesr =(r, 0,z) to be

[ l [
<k1nclk |V(rl,r2)|k1nclk2ncz) (2 L)zgl(klncllklncl)QZ(k2n021k2n ) > 2

G1,Gy ug,upe?

V(ky = kg + Gpmy —my +n3up, Ky — Ky + Gp,my — mp + 15Uy, [, 1), (11

where L is the length of tubes,nj=gcdn;,m;), G metallic states Eq$2) and(3)] is suppressed in the notation
=(27/|Ti|)s (se Z), andr; is the radiu& of tubei. and thatthis index only appears in the g factarsboth Egs.
We will also need the unscreened Coulomb matrix ele{11) and(12). Here we have used the crystal angular momen-
ment V°, which is a function of the interparticle distance tum difference in the Fourier transforms instead of the
[ri-r,|, i.e., a function ofz;—z,, 6,-6,, r;, andr,, so we difference, since this is the physicairysta) angular mo-
Fourier transform in the differences—z, and 6,— 6,. There-  mentum being transferréd Note that we have included um-

fore this matrix element is klapp scattering and that the unscreened interactior( .
has crystal(angulaj momentum conservation. Similar ma-
(kang kan IVO(Ir 1 = 1)) kane kone,) trix elements were considered by Urff.
1
=5 Lgl(klnc1,kinél)gz(kzncz.kénéz) A. The g factor and backscattering in metallic tubes
T
We now consider thg factors and show that they contain
X 2 2 VOK{ =k + Gy,my —my + Uy, 1) essential information about the electronic scattering. ghe
G1,Gp Upupe? factor for any(n,m) metallic tube for the scattering process
X 5k1+k2'k1 +Gl+G25 +m2+n1u1 mytmoytnoly* (12) (k,f,g)—>(k, ,gf ’gl) between the meta”iC Sta.teS, H@')! iS

found by inserting Eq(A10) (with =8 T/|T|) and Eq.(3)
Note that the+ in the states Eq(A1l) [the & index for  into Eg.(9):

125408-4
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ZIGZAG-LIKE: ZIGZAG-LIKE: ARMCHAIR-LIKE:
= - ~ 1072 ~ 102
€O ga10 CEMWEM gop g g =00 . 4 =00 .
Am=0 Am#£0 L /
K /, T g~1

Sk LA 4 : Lk
lkl;\ﬂ II.';\ k/;\-iﬂ"l’ k=0 k,é\gﬁtr

FIG. 3. The possible backscattering processearnin metallic
tube with a slightly raised Fermi level. Left: Backscattering in a
zigzaglike tubewithout crystal angular momentum changen=0
(i.e., s=s’) and a small wave vectolk’ —k|~2eg/%vg change,
which is suppressed ly=< 1072 from Eq.(15). Center: Backscatter-
ing in a zigzaglike tubewith crystal angular momentum change,
which haveg~ 1 from Eq.(16). Herem denotes the opposite af
in the set{m,, my}. Right: Two types of backscattering in armchair-
like tubes: (i) A large wave vector transfeffor s=—s’) between
states with the same crystal angular momenfun¥0) andg~1
[Eq. (16)] and (i) a small wave vector transfey=2sg/fivy Sup-

PHYSICAL REVIEW B 71, 125408(2005

, 1 nP+m+4mn\> 3( mP-n? \?
Gemeel*= |1+ o S — )+ 5 —
4 2(n“+ m“+ mn) 16\ n“+m +mn

(16)

which is% for (n,0), 1 for (n,n) and in between for all other
tubes. So in a zigzaglike tube we hatweo kinds of back-
scattering with small crystal wave vector exchange q
~ 2eplfivg [and thereby larg&(q,Am)]: Either Am=0 and
lg|=102or Am+#0 and|g| ~ 1. Note that the larger tham

the smallerV(q,Am). Even thoughV(q,Am) is large the
small g factor suppresses them=0 backscattering.

Consider now armchairlike tubes where the bands cross-
ing eg=0 all havem=0, so the small crystal wave vector
transfer around +2/3|T| haves=s’ and therefore thg fac-
tor is the same as in Eq15), i.e.,|g| <102 suppresses this
kind of backscatterindgFig. 3 (right)]. If we on the other
hand have a large crystal wave vector transfer backscattering

pressed byg<1072 Note that the distance between the points [Fig. 3 (right)], thens=—s’ and theg factor of order 1 from

+27/3|T| are not to scaldi.e., 2s¢/hivg<4w/3|T|) and that the
armchairlike bands are connected as in Fig. 2.

“!’5 ra’
Ok, 6K €)= S8 Ty + 1) =y T ERD

4 ’
(13
where we introduced
_ n?+ m? + 4mn
fn,m,;,q’ = 5@5’ - 2(n2+ m + mn) (l - 5@3’)
\«‘Eg(mz— n?)
(1-6,¢). (14

+|2(n2+mz+mn)

Theg factor in Eq.(13) has two terms: The first parentheses

Eq. (16) is used. So the large crystal wave vector back-
scattering is most important, since the Fourier transform does
not grow enough to compensate for the sngafactor.

Ando et al®8%have used th&-p approximation to con-
sider backscatterin¢from impuritie9 in metallic tubes and
found a result similar to Eq9), but without thes, term. The
small wave vector transfer backscattering was found to be
small in these papers. Kled8éas found similar results for
scattering in nanotubes; see also Ref. 15 for some experi-
mental evidence of lack of backscattering in metallic tubes
compared to semiconducting ones.

B. Screening effects using the random phase approximation

In Appendix B, we derive the screened Coulomb interac-
tion in the random phase approximati@RPA) including the
carbon nanotube band structure with the result

is the important wave vector independent scalar product oftkimi&r, Ksmo&|V(r 1,12, ) [kyma &y, kemadn)

(2) from Eq. (3) and the second term is a wave vector de- 1 L L
pendent correction terrfof first order ing;~ 0.1). = ﬁgl(klglfl’klglfl)gz(kzgﬁz’kzngz)
As we shall show in Sec. IV, only backscattering contrib-
utes to the Coulomb drag in metallic tubes and we therefore xS 3 VO(K; = Ky + Gy, my —my +1nqUy,[,1)

need to consider all possible backscattering processes
(é€==¢') in any metallic tube. Due to the double degeneracy
of the zigzaglike bands Ed4) at the Fermi level, we must X Btk 4K +G1+G, O+, momy gty )
consider backscattering both with and without crystal mo- , ) , ) i i
mentum exchangéFig. 3, center and left panels, respec- where €;5(q,Am, w) is the dielectric function disregarding
tively). t_he umk_lapp prpcessés_ee I_Eq.(()BlO)]. Note that the effec-
If s=¢’, thenAm=m’-m=0 and from Eq(13) we have tive noninteracting polarizatioge (g, Am, ), Eq.(B8), en-
tering the dielectric function contains tigefactors. For arm-
chairlike tubesxgﬁvi(q,Am,w) is given explicitly in Eqgs.

! !
G1,Gp Ug,UpeZ €15k —ky,my —my, @)

o _ V3alk’ - K (B12) and (B13). The bare Coulomb interaction for a cylin-
9k, &K' 5,- &) = %o 4 19 Grical geometry is
e
which is of order 102 or less for scattering around the Fermi VO(q,Am,r;,r)) = e_olAm(qri)KAm(qrj)v r<r, (18

level, i.e. for |k'—k|=2|ed/%ivy, the g factor is |g|

=sylegl/ o=1072 for |eg|=<0.3eV. If s=—¢’ then |[Am|  where |, (x) [Ky,(X)] is the modified Bessels functions of
=|m,—my,| # 0 and for backscattering around the Fermi levelthe first [second kind of order Am and ¢, is the vacuum
the g factor squared 8 permittivity.
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IV. THE TRANSRESISTANCE MODEL h2 L

The transresistandg,; is now found fordiffusive nano- o Wele2nln2kBT(27T)2rlr2Glsz bexc,
tubes using two coupled Boltzmann equatidins., Fermi 1
liquid theory) in linear response to the applied electric field — > | T(v1v}, vovh) 2
E; and for weak coupling between the tubes. The derivation 2m* "
is a generalization of Refs. 55 and 81-88&ed to study . b 1: 2 ) . )
bilayer systemsto the case of several general bands. We y J dgq f delz(qwl,Vl,w)Vlz(quGly V1, vy, 0)
only sketch the derivation and the details can be found in o 2mJ, sintP(fiw/2kgT)

Chap. 3 of Ref. 80. In order to simplify the notation we use @ @
v as a collection of band indices for the tube. A similar for- XF,n@eF, Q) (22)
mula of R,; can also be found using the Kubo formula and
doing perturbation theory to second order in the intertubavheren; is the carrier density,
interaction(the first order dc contribution is zexét VO
_ (q!Am!rler)

The coupled linearized Boltzmann equations for the non- VaalQ, vy, v, @) =
equilibrium distribution functions(k;,») (i=1,2; seeFig. €12(0,Am, )
1) are from Eq. (17), J(v,v;,vov5) are the selection rules for the

band indices such as crystal angular momentum and/or parity

ek afo(gklvl) B fa(ky,vy) - fo(sklyl) (for armchair tubesconservation anE(V'_) (9, w) is the avail-

= . (19 i
o kg m able(q, w)-phase space for scattering in tile tube given by
0] __ &7 _ )
e, M(eiy) _ Talkarva) = e, Fuy (@)= hzﬂg;E SUMky, = Vhgran)
h Jk ,
2 ” X [e1y) = Feigequllaiken, ks + ar) 1,
+ 91y, f,=1](ky, 1), (20)

(23

where a simple relaxation time approximation is used for thavhere theks are the solutions tey, —&y.q, ~fw=0 in the
impurity scattering?® g is the carrier charge in subsystém first Brillouin zone(FBZ) of subsys'lcerri, '

and §f,,f,=f°] is the linearized collision integral coupling

the two subsystems/tubes. The assumption of weak intertube oo = 1oey,

interaction and small external electric fielg were used to TR ok

linearize the equations and to only include the lowest-order

terms and therefore not have a collision integral on@g). 'S the velocity, S(%b() gives the sign ofx [if x=0 then

The linearized collision integral i&using theH theorenf): ~ S9NX)=0], and uy, is the transport mobility, which is a
single subsystem property. Note that thdunction is peri-
1, f,= (k1) odic and odd img.

Having stated this formula a few comments and interpre-
= > > > w(1'2;12) %y, ) e ,.) tations are in order. First, we note thatly backscattering
1V1 2V2 . . .
processes contribute to the drag between metallic tubes
0 o o the linearized band models, Edd) and(5), since we only
X[1 =t e, )1 - Pl (ke ve) =k, 11)], have two velocities = +13y,a/24 in the metallic bands,
(21) and therefore the signum-function of the velocity difference
before and after the scattering event in thdunction, Eq.

where the deviation from equilibriung;(k,v) was defined (23), makes only backscatteringe., vy, = ~vyqy) contrib-
though (K, 1)~ f(e,) = ey, )[ 1~ F(er,) Ji(k, ) and ute to theF function. In Sec. lll A we therefore analyzed the
(AN v/ v v, (AN}

g factors for all possible backscattering processes in metallic
tubes. The interaction and sifffiw/2kgT) are decreasing
functions ofq and w, respectively, so the importance of the
) phase spacé.e., theF functiong in the integral decreases
rorqoy=ET 1 _ 2 from the origin. It is worth noting that the forward scattering
w(1'2:12)= h [karakeraVadry = ralkuvakery) contribution, which for quadratic dispersion relation domi-
nates at higher temperatufsplays no role here. If we in-
cluded a curvature of the dispersion relation for the nano-
tubes, we would get a correction to the results presented
using the matrix element in Eq17). To derive the transre- here. However, there is one subtlety hidden in this, because if
sistanceR,,=V,/l,, we use the coupled Boltzmann equationswe consider Coulomb drag between short tubes, where the
(19 and (20) with (21) and thatl,=0, since a voltmeter is distribution functions are not relaxed to the Galilean invari-
placed on subsystem® After some algeb® we get ant form assumed in Ref. 86, but is instead given by a two-

Ula'ioé VlViVé kl,ki,ké eFBZ

w(1’2";12) is the transition rate for electron-electron scatter-
ing between the tubes found from the Fermi golden rule

X (&, + By, ™ B, T Eit)

125408-6



INTERSHELL RESISTANCE IN MULTIWALL CARBON... PHYSICAL REVIEW B 71, 125408(2005

(either by gate voltage or doping) a dip (or peak) ip; Rvill
appear due to the electron-hole symmetry for all kinds of
tube combinationsFor two concentric armchair tub&,5)

in (10,10] the transresistance as a functiorepfis shown in
Fig. 4 (the range ofeg is chosen to correspond to typical
experimentd76.77.91-% Note that we use the simplification
of having the same Fermi level in the two tubes in the nu-
merical calculation, but the situation for misaligned Fermi
levels is sketched in the inset of Fig. 4. As indicated in the
inset, we have the following scenario for increasing gate
voltage forsF)qﬁs . First hole-hole(h-h) scattering, then
one subsystem passes electron-hole symmetry,Rg=0,
afterwards e-h scattering until the other subsystem also
passes though the electron-hole symmetry point. The details
of the calculation are given below in Sec. VI A.

50

40

30

20~

105

33 02 01 0 o1 o2 03

FIG. 4. The transresistance per len@®ky/L (in Q/um) as a
function of the Fermi levetr (in eV) (e.g., a gate voltagdor equal VI. COULOMB DRAG BETWEEN METALLIC TUBES
Fermi levels of the two tube&,F:sFl):a(Fz). The temperature i$
=80 K (dotted, T=150 K (dashedl andT=300 K (full line). The
dip in R, atsr=0 reflects the electron-hole symmetry at this point. | et ys begin by calculating the transresistance, (£8),
Inset: A sketch of the situation for misaligned Fermi IeveL@ between two concentric refile., (n,n)] armchair nanotubes,
#¢f as a function of gate voltagee text for details which have|T|=a independent oh. The band index is

in this case the indedl=+1 from Eg. (5). To find the
step distribution function, the forward scattering does nou:(' (q w) functions, Eq.(23), we need the solutions @H
contribute to the Coulomb drag as shown in Refs. 87 and 88."

Second, we have used agquantum number mdependenﬁk+ ~hw=0 with the bands, Ed5), and remembering that

impurity relaxation timer; for each subsystem in Eg&L9) & should be made2/[T;| periodic by handin order to find

i) . two solutions and not only oneThe signum-function only
and(20). The mobility u7; can be shown to be proportional gives backscattering, which is expressed by step functions.

(i)
to 7, i.e. ,uTroc 7, from a smgle subsystem Boltzmann equa- For intraband backscatterifd =IT we haveg= 1 [Eq. (16)
tion [such as Eq(19)]. Therefore thé= function, Eq.(23), is and for interband backsgtterinﬁ’:—ﬂegwe [ha?/é |g|g

7, independent, so thgansresistance R is independent of —53[3(aq)2/16] [E .
. . o ; Lo . = g. (15)] as found in Sec. Illl A. Therefore
the impurity relaxation timesSo in the quasiballistic regime the F functions aré for 0<q= m/|T:

for large 7, the transresistance is still formally correct. How-
ever, there has been some work on drag between ballistic
one-dimensional systems with free-electron-like bands usin i i

Sy : . i 9 F(q0) = - CY0(- o +vo0)
Boltzmann equations, where almost identical transresistance

formula is foundB® o X {— {fo(sl) - f°<— gy— %kohvo”

A. Drag between (real) armchair tubes

As a last comment, we note that umklapp scattering is
only possible if the tubes are commensurable due to the

6,6, function in Eq.(22) as also found in Ref. 82. " {fo(sz) _ f0<—sl— %koﬁv())]}, (24)

V. ELECTRON-HOLE SYMMETRY AND COULOMB DRAG
All nanotubes have an inherited electron-hole symmetryW'th_ _
from the graphene band structure fg=0, which intuitively &1= (il2)(w+vg9 ~ 2v0ko) @nde; = (R/2)(w ~vol + voko),
means that there are as many electrons as holesfdb (for
the precise definition see Ref. 90; for a recent measurement =0 P o+
of electron-hole symmetry see Ref.)1%0 there will be an ++(0 @) = = G- w +vo0)
equal amount of momentum transfer(foom) the electrons 0 - 1
and holes and therefore no voltage difference will arise, i.e., (21 = 7 =2+ Shwoko
R,1=0, if one of the subsystems has electron-hole symmetry. L
Formally, theF function can be seen to vanish at electron- 0 ol _~ %
hole symmetry by usinggM(s):l—ffL(—s) (after doing the ¥ [f (®2) = f < a1t thkO)]} 25
sum over the band indicgswvhereu is the chemical poten-
tial. This has also been used to show hBy can change
sign8? with
Therefore, we predict thaby varying the Fermi levels &, =(7/2)(w+ v —vgke) andz, = (/2)(w — vgq+ 200Ky),

125408-7
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Fii(gw) F__(gw)

FIG. 5. Contour plot of thd= functions for the intraband scat-
tering for 0<q</|T|, &g>0 and the temperatufB=0.1T¢. Note

PHYSICAL REVIEW Br1, 125408(2009

INTRA BAND PROCESSES

-Fintra = F+++F——

ZERO

T o =
k0+,wo

ko —

ﬁ‘vo

the smearing by the Fermi functions due to the temperature on some

edges and the sharp edge atuvyg from the step function
O(-w+vQ).

FI(g,0) = -CVE——"— (q i 0w - voq + voko)
X (= = vod + 2v0Ko)
X {=[fe)) = f%=ep)]+[f%ep) - =]}
(26)
and
FO(qw) = c<'>sé3(qa) - - gl + voko)
X {=[f%@ey) = f=e5) ]+ [fey) = %= e},
(27)

where g1=(/2)(w+voq) and e;,=(A/2)(w-veq) and we
have calculated the common single subsystem prefactor

_ 2ep+ hworl| T
2(fivg)?

&7
hz;“(l)

cl = (28)
It is important to note that the interbakdfunctions,F,_ and

F_., are heavily suppressed compared to the intraband
functions (shown in Fig. 5 by |g|?=s3[3(ag)?/16] of order

FIG. 6. Contour plot of thé 5 function. Fi,, gives the phase
space for intraband scattering (irea) armchair tubesk;, is seen
for 0<g<m/a and is odd ing and should be repeated periodically
with 27r/a as a function of.

In real armchair tubes thH index is a parity index in the
cylindrical coordinaté74and therefore the Coulomb matrix
element has the property

(kT KI5 V(r 1, 1 5[) [k TT1KoMT )
= I Tk T R TS V(r 4, 1 ol) KaIT koI R), (29)
i.e., the product of the parity is conserved in the interaction
Since bothlI=+1 havem=0 there is no angular momentum
selection rule, so the only selection rulgin Eq. (22) is
j(Hl,Hi,Hz,Hé):5H1H2'H1Hé, which reduces the number of
terms by a factor of two. Sinc¥(q,Am) is parity indepen-

dent in Eq.(22), then the sum over band indices fgar,|
=[T,| is

>
11,1141,

=(Fi+ F——)2 +(F_+ F+—)2 = (Fimra)2 + (Finter)zy
(30)

Frong Frng O, gy

which defines the inter- and intrabaRdunctions.(Fine,)? is

=10 for backscattering around the Fermi level. Therefore of fourth order insyq and therefore strongly suppressed com-

including the tight-binding states in the Coulomb matrix el-

ement and not just in the available phase space for scatteri
as in Ref. 94 is a very important effect.

pared toF;,, even thoughF,,. has a phase space for
ranallerq and w. Fiyy(q, @) is shown in Fig. 6.
We now have all the ingredients of the transresistdge

3 60r
F = 174K 501
25 — T = 3481 J
g -
> Z40; o
1.5 R~ 30 ’-,.‘
] -
1 & 205 Rad
......................... 7T = 1740K
0.5 o Tr = 69K 10 Ll
0 A T/Ty 0 : T/K]
() 02 04 06 08 1 © 50 100 150 200 250 300 350

FIG. 7. The transresistance per lengh/L (in units of O/ um) versus temperatur€ [or T/Tg (left)]. The curves are obtained from a

numerical integration of Eq31) for a (5,9 in a (10,10 tube. Curves for four different Fermi levelg=gZ

W= (| e., gate voltages or

dopings are seeng=0.006 eV(T=69 K) (left, dashed ling eg=0.015 eV(T=174 K) (left, solid line), ep= 0 15 eV(Tg=1740 K) (right,
dashed linpandeg=0.3 eV (right, solid line. Note the difference in magnitude between the transresistaiges
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ad % T = 300K —
Y _ —. 801 T ) T = 300K
12| \’\"‘A. ‘.“ er = 0.3¢V] 560' gi er = 0.3eV |
‘:»A"“’?,Q) in a (n,n) = &
10 N, ., :
.‘l:‘.’ Y (6’6) ina (n’ n)
107 .‘:{A * {
A
65) i s () 2t
1077(5,5) i a (n,n) Sy, ]
oﬁtmw
. . . . n

10 15 20 25 30 35

-80 7 \v,\/\ T T,
FIG. 8. The transresistance per lend®by/L versus radiugr L LT
«n) for armchair tubes. The different outer and inner armchair 08 1 12141618 2 22242628 3
tubes are: A5,5) in a(n,n) (dotg, a(6,6) in a(n,n) (triangles and
a (9,9 in a (n,n) (stars. The radius of the outer tube is: FIG. 9. The transresistance per leng/L as a function of the
=\3a/2mn for a (n,n) tube. HereT=300 K andeV'=¢?= ratio of the translational vectors lengfffiy|/|T,| for two armchair-

like tubes. The peaks corresponding to different scattering processes
are seen as explained in the text. Numerically, we|TUisg=a, radii
as for a(5,5 in a (10,10 tube, T=300 K and 8(F1):8(F2):8F

=0.3 eV is used. Note the logarithmic scale.

T - : 1 Jﬂc %fx dw_|V12(q,0,w)|2 =0.3 eV. If the tubes have a different radius, only the magnitude of
L wennkgT2mrir, )y 27)y  sintP(hw/2kgT) the peak is change@ee Fig. 8 Inset(a): The scattering processes
in tube 1 and 2 leading to the peak|&t|/|T,|=1.28. Note that the
X {[Fintra(qaw)]z + [Finter(an)]z}- (31 backscattering processes are electronlike and holelike, respectively,

S0R»1<0. Inset(b): Peaks arountil4|/|T,/=1/2. Note the differ-

A numerical integration yieldR,, as a function otg and the :
ence in scale.

temperatureT, shown in Figs. 4 and 7, respectively. The
transresistance per leng®y,/L is of the order a few)/ um.
R,; is seen to be linear it for T<0.4T¢ as also found for

free-electron-like band®. For higher temperatures the tran- D @

. . - . ~ gWE@ D@ V(@
sresistance increases or decreases depending on the Fermi 2 ,Fnlni':nzné_ PR+ PR C+ PR
level. Numerically, we find a factor of £0difference be- I IToM, T,
tween the contribution t&,; from F,e; andFjy2 SO We can +FOF® 4+ O((5,9)? (32)

conclude thathe drag is due to the intraband backscattering _ _
processesThe largest contribution to the integral is aroundas for the(rea) armchair tube case E¢g0). TheF"” andF!)
g=Kkot2er/fivy (see Fig. 6 which corresponds to umklapp are the same as those found in Sec. VI A and shown in Fig.
scattering processes around the Fermi level, &gk, 5 exceptthaf is replaced byT;| (but not in theg facton.
—eplhvg and K =-kg+ep/fivg so q=k'—k+27/|Ti|=kg Since|T4| and|T,| are different(in genera), it is harder to
+2epl huy,. conserve(crysta) momentum near the Fermi level for the
Note that screening induced by the substrate could changgominant backscattering process with momentum trargpfer
the magnitude of the transresistance a small amount, whickk)'+ 2s¢/%v, with k'=27/3|T,|. However, for some val-
could be modeled by introducing a new dielectric constant ues of|T,| and|T,| it is possible to conserve momentum near
k=€ € instead ofe, in Eq. (B15) with € about 1 to $°For  the Fermi level, which gives rise to peaks ®y;, e.g., at
the present case, the magnitudeRy is changed<10%, |T,|/|T,/=1 as seen in Fig. 9. The peaks on both sides of

whene, is increased from 1 to 3. IT4|/|T5=1 are

The transresistance depends on the radii of the tubes only
via the bare Coulomb interaction E@15). Figure 8 shows [Tol = [Tal | _ 6er 33
that R,; decreases exponentialijor n=<25) when keeping IT,T, | whog’

the inner armchair tube at a fixed radius and increasing the ) " @ _
outer tube radius. For parallel two-dimensional electrorcorresponding td;" +2s¢/fivg=ky + 2e¢/hivg [see inseta)

gasesR,; was found to depend on the separatibas$® R,;  In Fig. 9]. These peaks havg,; <0, since they correspond
o« d?. to a resonance between a electronlike and a holelike back-
scattering in the sense that a holelikeectronlike back-
scattering takes place in a holelikelectronlike band with
sgn(vy) =-sgrk) (sgnv,)=sgrk)) in the FBZ. The peaks
For two general armchairlike tubes, we do not have 3round|T,|/|T,|=% and 2 are found in the same way by
parity selection rule and in genendl,| #|T,| as seen in the taking the backscattering processps 2k8>128F/hv0 into
Table in Appendix A. The(rl?fo(rg we have no selection rulesgecount, If the radii of the tubes are different, then the mag-
but all other terms tharrF |, ,, are of higher order in njtude of R,; will change (see Fig. 8 but the signs and
(s00)? and therefore small, i.e., positions of the peaks are the same. The peaks are broadened

B. Drag between armchairlike tubes

125408-9



LUNDE, FLENSBERG, AND JAUHO PHYSICAL REVIEW Br1, 125408(2009

by increasing temperature and the positions of the peaks der backscattering processes will contribute to the drag. We
pend on er as seen, e.qg.,, from Eq33) (except for can calculate thg factors in the same way as for the metallic
IT4//|T2|=3, 1, and 2. The situation of varyingT,| and|T,| ~ tubes and for intraband scattering they are of order one.
is similar to varying the densities in the parallel two- However, the magnitude of the backscattering momentum
dimensional(2D) system$! Note that if we have a tube transfer around the Fermi level has to be approximately the
configuration corresponding to a negative dip in FigR9;  same in the two tubes in order to satisfy momentum conser-
<0), then this tube configuration will have a peak instead ofvation. In general, this isot the case.

a dip as a function of the gate voltage. Summarizing, the If we deal withlarger tubesmore bands can come into
Coulomb drag between armchairlike tubes is strongly deperilay and thereby more scattering possibilities appear than
dent on the magnitude of the translational vectdrg and  captured in the single band quadratic mogle Ref. 70 for

IT,| and can lead to both negative and positive transresis? discussion on scattering in larger MWCNJT'$his is also
tance. the case of larger metallic tubes. Coulomb drag in the qua-

dratic model with more bandgwith different angular mo-
. . mentum along the tubdor tubes of semiconducting material
C. Drag between zigzaglike tubes is considered in Ref. 98.
Consider the drag between two zigzaglike tubes, where
the v index is é=+1 andm e {m,,mp} from Eq. (4). The
backscattering= function, F(,g_"z1 et has a form similar to

Fi'll),—H for armchairlike tube$Eqgs. (26) and(27)], where the
important part is the backscattering around smgll
=2¢plfivg. This backscattering can be both withm # 0)
and without(Am=0) exchange of crystal angular momentum
with the g factors

VIll. SUMMARY

We have considered the intershell resistaRggoriginat-
ing from the intershell Coulomb interaction neglecting tun-
neling, i.e., in a Coulomb drag configuration. For any tube
combination we predict a dip or peak Ry, as a function of
gate voltage, which could be experimentally observable. The
dip (or peal is due to theelectron-hole symmetrgf the

lg(Am = 0)|? = (s,a0)® and |g(Am # 0)?=1 (34)  carbon nanotube band structure. WhetRgy has a dip or
) _ _ peak depends on the sign Bf;, when both systems have

found in Sec. lll A. Since there is crystal angular momentumgegrmi levels above the electron-hole symmetry point.
conservatioff it depends on the combination of the zigzag-  The order of magnitudeand sign of R,; were found to
like tubes(and theirm, andm,) whether theAm # 0 back-  gepend crucially on the chirality and Fermi level mismatch-
scattering is possible or not, so we have very different ing of the two tubes. The order of magnitude R§; can
cases _ _ reach~50 Q/um under favorable circumstances. The origin

(1) If Am#0 is not possible, then onlAm=0 back-  of the drastic change in magnitude between different chirali-
scattering folg=2eg/fiwg is present, but this is strongly sup- ties is the suppressed backscattering due to the Coulomb
pressed by the smal factor and so is the drag. So in this matrix element between Bloch states combined with the mis-
case the small wave vector transfer forward scattefoy  matching of wave vector and crystal angular momentum
nonlinearized bandscould become important, but in any conservation near the Fermi level. The intershell resistance
case the eff_ect is small. An example is the drag between WR,, was found to be linear in temperature for low tempera-
(rea) metallic zigzag tubegsee Table )l _ _ tures(compared tdp), just as for a single quadratic band. To

(2) If Am#0 is possible, then this process is the domi-facijitate the analysis, we classifiedl metallic tubes in two

nant, even though there is a small suppresstmmpared to  categories: zigzaglike or armchairlike, and described their
the g facton from havingAm # 0 in the Fourier transform crystal angular momentum properties.

V12(q,Am, ), which is smaller the largeAm. An example Throughout the paper, we use Fermi liquid theory to de-
is (12,19 in a (15,18, which has an angular momentum scribe the Coulomb drag in the MWCNT's, which gives a
exchange oAm=x+1. benchmark result for comparison to future experiments and

Furthermore, there are no peaksRg, as a function of | yttinger liquid theories of drag in MWCNT’s. The effects
IT4|/|T,| as for the armchairlike tubes, since the transferrectonsidered in this paper should be helpful in interpreting

crystal wave vector= +2ec/fvg is independent of Ti|.  future measurements of the intershell resistance.
From the same principles as used above, we find the drag

between zigzaglike and armchairlike tubes to be strongly
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discussions of an algebraic nature. A helpful comment from The conventional way to obtain the band structure for a
T. Vukovi¢ is also appreciated. isolated singlewall(n,m) nanotube using the translational
unit cell is to apply periodic boundary conditions on the two
dimensional graphene tight-binding st&fey (r) along the
circumferentialC of the tube?®1%j.e.,

APPENDIX A: ENERGY BAND STRUCTURE OF THE
CARBON NANOTUBES

We will now give a rather detailed discussion of the band ik
structure of carbon nanotubes, since the intershell Coulomb (r+C) =€~ (r) =4 (r) O k-C=2mm,, (A3)
interaction matrix element depends critically on the Bloch
states of the two tubes due to the two atomic unit ¢eflla
graphite layeras seen in Sec. lll. The carbon nanotube lat- 2(n?+ m? + nm)
tice can be thought of as a wrappifige., a conformal map- =
ping) of a graphite layer into a tube. The wrapping is pre-
formed such that the chiral vect@=na;+ma, becomes the being the number oftwo atomid graphene unit cells in a
circumferential of the(n,m) nanotube and this determines translational unit cefl®! Therebyn, labels the bandgas a
the lattice completel§?'%° [Here a;=(a/2)(v3,-1) anda,  function ofk) using the translational unit cell. One disadvan-
=(a/2)(v3,1) are graphene lattice vectors ama=|a| tage of using this larger translational unit cell is, thats not
=y3a.., Wherea._. is the interatomic distance. the crystal angular momentyrbut only related to the actual
Any (n,m) nanotube lattice has three symmetries: A dis-physical crystal angular momentum by
crete translational symmetry along the tube, a discrete rota-
tional symmetry around the tube axis, and a helical symme- nc=m (modn). (Ad)
try (i.e., a screw operationThese symmetries gives rise to
the three corresponding quantum numbérsgcrystal wave
vector along the tube m (the crystal angular momentum
component along the tuheand« (helical quantum numbggr example is given in Fig. 10
Only two of these symmetriegquantum numbejs are T

. . : To do a tight-binding calculation for graphéfigit is es-
needed to label the eigenstates, since the symmetries are nat .. .
) > ) : .~ ‘sential that the unit cell of graphene has two atoms, so the
independent? Conventionally translational symmetry is

used to label the states, but this does not use the small tight-binding statéWannier decomposition of the eigensjate

possible unit cell and can therefore give many bands in the s two components?
FBZ with the same angular momentum. 1 .

Any carbon nanotube can be generated from a primitive i (r) = ——E Rl ¥(r -R) + B W (r—-R-d)],
two atomic unit cell using only discrete rotations and discrete VN'R
screw operations and thereby givirigeneralize@l Bloch (AB)
states|km).”>"2 The advantage of using this method is that
each energy bants a function ofx) has its own crystal WhereW is a 2p, orbital (Wannier function localized at each
angular momenturm. The discrete rotational symmetry is atom,R=n;a;+n,a; (n;,n; € 7) are lattice vectors is the
generated by the vect@, alongC giving the smallest pos- number of unit cells in the Iayed:%(aﬁaz) is the vector

wheren, is an integer inf0,1,2, ... N=1} with

= =n
gcd2m+n,2n+m)

Furthermore, we can connect the description of the band
structure using the primitive unit cell and the translational
unit cell by k=k -H, i.e., k depends on botk andn..”? An

sible rotation leaving the lattice invariant, i.e., between the two atoms in the unit cell aag, B, are func-
n m tions to be determined by the tight-binding calculation. To
C,=—a,+—a, Wwhere n=gcdn,m), (A1)  find the energy we insewti(r) in Hiyy (r) =g (r) and ob-
n n

tain a 2X 2 matrix equation:

i.e.,n is the greatest common divisor nfandm. So a given
" J g (Hll H12><ak>=s (Su 312)<ak> (A6)
Hop Hao/\ By sy S/ \B/

(n,m) tube has crystal angular momentume {0,1,... n

-1}. The disadvantage of using the symmetry adapted Bloch
whereH;;, S; are the overlap integrals with and without the
Hamiltonian found in the nearest neighbor tight-binding ap-

stategxm) is thatx is in the direction of the generatér for
the helical symmetry, which in general is different for differ-
ent chiral vectors. P

If we instead use théften much larger translational unit proximation to be
cell the states can be labeled by ]-7/|T|,#/|T|], where Hyp= — yo(l+e K+ gk = - Y(k), (A7)
T generates the translational symmethe translational vec-
tor) and is given biP?

8_12: SoY(k), Si = 11 Hii = €0 (A8)
_ (2m+nja; - (2n+m)a,

= : (A2)  where the value of the overlap integral i=3 eV, the
ged2m+n,2n+m) overlap of the orbitals até! s,~ 0.1 ande, is the energy of
Since we do not use the primitive unit cell in this case, but ahe orbital, which is set to zero. Here the conventigns,
larger translational unit cell, we get a smaller FBZ and>0 is used and note that others use slightly different values
thereby more bands in the FBZ than there are crystal angulde.g., yo=2.5—3.2.194-197By a diagonalization of E(A6)
momentum quantum numbers. we find[for Y(k) # 0]
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PRIMITIVE UNIT CELL ZONE FOLDING PROCEDURE TRANSLATIONAL UNIT CELL
+
8knc / i/

3

2.5,

2

1.5
v
‘5.5

-3 -2 -1 1 2 3

“Ix

-3 -2 -1 1 2

FIG. 10. Left: Them=1 band for &5, 5) tube in the FBZ of the primitive unit cell as a function & |-, 7]. Center: Than=1 band
is pushed into the smaller FBZ of the translational unit cell by ugaga/2+n.7/5, with n.=1 andn.=6, sincem=1. Note that the band
is symmetrical arounel/5, sincem=1. Right: The band structure for the translational unit cell. Both bands have crystal angular momentum
m=1, but indicem;=1 andn.=6.

Y 1 ;w s 2ﬁUo\/ £:D )2 (n+m)+§%(m—n) 2
gic= =y Y(K), ( ‘ ) =—=| Y& |, (A9) €arn = * D o N~ > ,
Bx/+ V2
! (A11)

where we have neglectes) in the energy(but not in the ~Where
eigenstate By insertingk decomposed along the tulf&)

and around the tubgC): k=KT/|T|+k.C/|C| with k.
=(2m/|C|)n., one obtains the band structure for nanotube m

labeled byk andn.. Essentially the same tight-binding cal- iq {he diameter andy=13y,a/2% is the value of the velocity
culation can be done using only the helical and rotational,, 5| metallic tubes.

symmetry as in Ref. 71 and the same result is found, when

we usex=k-H and Eq.(A4) to convert between the quan- _ _ ) o

tum number¥® (see Fig. 10 2. Unified picture of metallic tubes: armchairlike

The Fermi level is ak-=0, since half of the state@p, and zigzaglike tubes
orbitalg are filled. By doping and/or a gate voltage the Fermi  \We will now show using the linearize¥, Eq. (A10), that
level can be moved about+0.4 eV&76.77919%yrthermore  all metallic tubes are either zigzaglike or armchairliead
note that graphene has electron-hole symniétiyr e-=0  define the precise meaning of this(if-m)/3 e 7 the (n,m)
and therefore so does afiy,m) carbon nanotube. tube is metallic and has four crossings of the Fermi level
found from Eg. (All): two [the = in Eqg. (A11l)] for
ns"=(2m+n)/3 and two (+) for ni'=(2n+m)/3 (i.e.,
Rc=0). This gives the energy and eigenstates for the bands
We are only interested in the transport properties of nanoerossing the Fermi level:
tubes and therefore expandk) around the Fermi leved,

o= aynZ+m?+mn

1. The linearized band structure

=0, i.e., around the two zer8 of Y(k), sf%nq = &hvgfiq, (A12)
ngz_ﬂ'(%,g%) (s==x1) a 1 _gi(m_n)—G\*E(n"‘m)
a3 ( ) == 2yn’+m?+mn |, (A13)
ﬂ &s \2 1
and obtain

whereé=+1. This is found by inserting the linearizé&d Eq.
\Ea (A10), into Eq.(A9) and usingR:=0. By doing this straight-
Y(K +8) = —(if,+s8), (A10)  forwardly, we get sgfRy) in a ande = *|&+|, but we require
2 continuity of the stategacross theY' =0 point where Eg.
(A9) was not valid and remove the signum-function and
where we have introduced the deviation frok, by  thereby also the absolute value, i.e., the metallic linear bands
A=k-K._. Note thafl Y (K +R)|=(v3a/2)|&]| usable in Eq.  cross the Fermi levek-=0). Note thate and 8 are indepen-
(A9). Furthermore, note that we do not expaXdaround dent of &t and therebk (to first order ink), which turns out
each individuakg# 0 used, but around-=0, since this pre- to be important in the Coulomb matrix element. The energy
serves the electron-hole symmetry of the band structure. Bpands cross the Fermi levék=0) at £;=0 and since
inserting R=/T/|T|+R:C/|C| into the periodic boundary k=k-T/|T|=f;+K-T/|T| the crossing ok=0 as a func-
condition, Eq.(A3), the energy is found to be tion of k is at
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-2 ‘ 1 For a(real) armchair(n,n) tube thell index in Eq.(A17)
org=+ H . . . . . .
T gcd2n +m,2m+n)|T| S is thg parlt%/4 in the angular coord|n§1_ten|n cylindrical
K- ?= 5 coordinate8 74 and the states aﬂeg):(llez)(l) to all or-
7l ™ forg=—1 ders ink (in the nearest-neighbor tight-binding approxima-
ged2n+m,2m+n)|T| tion). Results similar to the ones obtained from the linearized

(A14) Y, Eq. (A10), can by found by using thé-p approxi-
mation'! however, this does not reveal the crystal angular
which are either both g=0 (double degenerate¥™") or  momentum.
k=+27/3|T| (nondegenerajefor k in the FBZ, —=/|T|<k
<7/|T| (see Ref. 80 for details Furthermore, we have the ~ APPENDIX B: SCREENING IN THE RPA APPROACH

following connection between the crossingf=0 and the INCLUDING THE BAND STRUCTURE
crystal angular momentum of the bands crossiigf the . . .
bands are crossing-=0 atk=0, then the two double degen- In this appendix, we will calculate the screened Coulomb

erate crosses have different nonzero angular momentum, Potential in the RPA in order to include both static and dy-
namical screening effects in the Coulomb drag, which have

2n+m 2m+n been seen to be important perviously for bilayer
m, = (modn),  mp=—2—(modn) (A15)  systemg556:81The Dyson equation for the screened potential
in real and frequency space is

and my# my,. If, on the other hand, the crossing is lat
=+27/3[T|, then both crosses hawe,=m,=0. This makes V(r 1, F o) = V(|1 = 1)) +Jdr de'VO(|f1— r))
it possible to divideall metallic tubes into either armchair-

like or zigzaglike tubegsee Fig. 2 with the following bands SO w)V(r B1
crossing the Fermi levelk:=0): XV r0), BD

where the noninteracting polarizability is

XO(rtr' ) ==i6t - t){p(r,0,pr",t) o, (B2)

armchairlike:e! = — hvg(lk| — ko), m=0, (A17)  wherep(r,t) is the density operator in the interaction picture
B B B and the averagé --)q is taken for noninteracting particles.
where ko=2m/3[T|, é=+1, Il=%1, and ke]-m/[T]|, By writing the density operator by the help of a complete set

«/|T|]. The translational vectof (and|T|) is different for f ¢ tat find the polarizability to b
different metallic tubes independent of the type. Note that thg quantum stategg,,(r)} we find the polarizability to be

armchairlike bands are in general not connected in the way %(r,r’,w)
modelled by Eq(A17) [consider, e.g., &,4) tube], but since

zigzaglike:ef,, = &hvgk, m e {m,my}, (A16)

0 _ 0,
they have the same angular momentumO we connect the => M # et '
Ve ) ; . @ (N@, (1)@, (e, ')
bands in this way for convenience. For scattering between oy En T Ey TOF i0
the bands we will, however, consider the bands as four bands 7
as we saw in Sec. lll. Examples of zigzaglike and armchair- = E }%'”,(w)d;(r)go;,(r’)(,oﬂ,(r)<p,7(r’), (B3)
like tubes are found in Table I. '

TABLE I. Examples of armchairliké AL ) and zigzaglike(ZL) metallic tubes, i.e., all kinds of metallic
tubes. For the AL tubes the difference in the length of the translational v&camd the diameteb is seen
and for the ZL tubes we note the variety of the crystal angular momenmty#ai(2n+m)/3] (modn) and
mp=[(2m+n)/3] (modn) of the bands crossing the Fermi lev@l-=0). Numerically, it turns out that
|m,—my,|=1 for most of the ZL tubes, but there are other cases such ad#he?4 tube. Remember that
n=gcdn,m) anda=|a.

Chirality Type my mp n [T|/a D/a
(n, n) AL 0 0 n 1 Van/@
(7,4 AL 0 0 1 V31 \93/m
(15,6 AL 0 0 3 V13 339/
(8,23 AL 0 0 1 V259 77717
(10,25 AL 0 0 5 V13 539/
(n, 0) ZL 2n/3 n/3 n V3 n/m
(9,6 ZL 2 1 3 \57 319/
(6,20) ZL 2 1 3 V201 3067/
(18,12 ZL 4 2 6 57 6119/7
(12,24 ZL 4 8 12 V21 127/

125408-13
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where 0 is a positive infinitesimalf®(¢) is the Fermi func- X(n'2' V(1,13 0)[72). (BS)
tion and}éfm,(w) was introduced. To find the Coulomb ma-
trix element we insert the RPA equati¢B1l) into

(1'2'|V(ry,rp,0)[12) This equation can be used for any set of quantum states and
. . in particular for the metallic states for nanotubessis the
:fdrlf dr 207, (1 1) @0 (r ) V(I 1,7 2,0) @1(r 1) (I 2) set of indicedi,k, &,s,0), wherei=1,2 is thetube index,o

is the spin and remember thatdetermines the angular mo-
(B4) mentumm. The screened and unscreened matrix elements,
Egs.(11) and(12), can now be inserted into E(B5) to get

and get
J the screened matrix element. Doing this, we observe that

(1’2" |V(r 1,1 5, )|12) 01(kgs1é1,Kis161)9a(kos 065, kis5&5) is a common  factor,
=(1'2'V(ry - r5))[12) wh|c~hOS|mpI|f|e_s t_he_ result. To_ simplify fqrther, we use that
and; are periodic in the reciprocal latticg; for subsystem

+ 2 Xy (@)L V(= 1] 177") i, 9(7.7)=g"(n',n) and introduceq,=k/ ki, Am;=m/

' -m; and
|
Wiliz(ql’Aml!qZAer w) = 2 E V(ql + GiliAnll + niluil!qz + GiZ!AmZ + nizuiziril! I’iz) ' (BG)

Gi ,Gi Ui ,U; e’
1 2 12

whereiq, i, are tube indices anql,ui2 are integers. Equiva- (kymi &7, Komogb V(1 1,1 5, @) [kym &1, Komo o)
lently we introduceV?; for the sum oveM® (without the

12 1
gs and the 1/zL factor. So Eq.(B5) becomes = ﬁgl(klelél,kisiéi)gz(kzqzéz,késgé)
VOK, — kg + Gp,m) —my +nqUq, M, To)
Wi (G, Amg G, Amy , o) X 2 2 T R
" G1,G; Up,Up €12(ky —kg,my = my, @)
=27LWi; (i, Am; ¢, Am; )
E e E X5kl+k2,ki+ké+G1+Gz5mi+mé+nlul,ml+m2+n2u2v (B9)

> E Vo(qil *+ Gi Amy, g Ui i)
E with
X Xeti(Gh, + Gy Amy + 1y Uy )

€1(0,Am, @) = [1 = x% (9, Am, ) VO(q, Am, T 1,r)]

XWi (th, + G Ami +n Ui, G, Am, @), (B7)
X[l _X(e)ff,Z(q!Am!w)vo(qlAmerIrZ)]
which has a matrix structure in the reciprocal lattice and in = X2 1(9,Am, ) X% (0, Am, )
and the effective polarization is XVO(q, Am, Ty, FVO(Q, Am, T, F,), (BL0)
0 2 ~0 L where we have neglected the reciprocal lattice vectors differ-
Xori (@AM, @) = =— > > Y(kés k+qé's’, ) ent from zero and therefore used
2wl ks 7%
o (k K+ 1|2 B
loi(k.&sik+ a8, (B8) VO(Qil,Amil.|’1,rz)Vng(Qil,Amil,QiZ.Amiz)

= V(g Amy 1o, T )W Amy L Amy ) = 0.
wheres’ is chosen such that’/=m+Am. Note that}° is (i Ay, 12, P Wia(Gy, Armiy, Gy A,

diagonal in the tube indeix since we do not include tunnel- If we consider armchair-like tubg®nly the linear bands
ling between the tubes. In order to find the screened interfrom Eq. (A17)], then all the crystal angular momentum is
shell Coulomb interaction we truncate E@®7) and only  zero and from theg-factor analysis in Sec. Ill A the inter-
include theGil=O andui1=0 term in the sum, which gives us band transitiorflI=1«1II'=-1 in Eq.(A17)] can safely be
a 2X 2 matrix equatior(in i) to find Wy,, and therefore the neglected and for the intraband transition we havel.
screened Coulomb matrix element is Therefore
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2 -
ngf,i(qioaw):_z E E Xio(kH,k+ qll, )
Lo fi=x1

= ngf,i(q! )=+ ngf,i(q: o)==,

and for O<sq=/|T| we find in the long tube limit and for

zero temperatur€l =0)

)((E);ff,i(q,w)nz+1
_ 2 (ko_i_ )UOQ(ko*‘ZSF/ﬁUo)
(2m)? hivg g w? - vng
er |} 2v00(q = #/|T))
+6lg-ky+ — | ——F—
(q o ﬁvo){ Vo’ — o

? = (0~ 2Ky + 2e¢/fivg)?

o’ - vgdf?

1 SF) 1

+6lq- Zky— | —
(q Zko fivg/ 2vg

Xln( ‘ w?- vg(q— ko — 2e(/fvg)?

1 (
+—1n
200

o’ = ve’

|

)

1
+ 6| =kg+
<2k0 hug V3P - @?

and

ngf,i(qa o)1=t

& _q) 20009(3ko + effive = q)

2

T en% fo

+¢9(q—ko—E>i

Uo 21)0
><In<

e
ko

véqz— w

v3(q = 2ko — 28/hvg)? — w?
2

|

o )ZUOQ(ko"'sF/ﬁUo)

- 2_ 22
hvg w”—vgQ

véq2 -~

2 [ 9<k0+£ q)zUOQ(ko"‘sF/ﬁUo‘Q)
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1
+ B(q - Eko +

| )f)

which for smallq and » simplifies to the result iH?

i) 200q(/|T| - )
fvg w? - v30?

v5(q— ko + 2e¢/fivg)? — 0
2

o5 - w
(813

XO @ w)H:+1=XO (q w)=1= 4on2
efti (0 effi (9 2m?h(w? - (vea)?)

(B14)

Note that in the static limit the effective polarizability is just
a constant. The zero temperature approximationf the po-
larizability is good as long a3 is much smaller thafi,
which is often the case for nanotub@s~ 1000 K). Includ-
ing finite temperature in the polarizability could give a plas-
mon enhanced drag as previously found for bilayer
system&%57 at T=0.5T. For zigzaglike tubes the effective
polarizability can be found in the same way, but for the linear
bands crossing the Fermi level-=0) we can—in contrast
to the armchairlike case—have baim=0 andAm=+(m,
—mb).

The unscreened Coulomb interactMP(q,Am,ri,rj) can
be found from the Poisson equation by Fourier transforming
in the cylindrical coordinate and in the coordinate along the
tube, i.e &0

&
V(. Am 1) = —lyn(@rK an(r), 1=,
0
(B15)

where |,(X) [Kxn(X)] is the modified Bessel's functions of
the first[second kind of order Am and ¢, is the vacuum
permittivity. Note that the smald limit is (logarithmig di-
vergent only for the potential witAm=0. So we have all the
ingredients in the screened Coulomb matrix element between
different shells using the tight-binding states of the carbon
nanotubes, which is used to model the Coulomb drag be-
tween the shells.
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