14,866 research outputs found

    Detection of the 13CO(J=6-5) Transition in the Starburst Galaxy NGC 253

    Full text link
    We report the detection of 13CO(J=6-5) emission from the nucleus of the starburst galaxy NGC 253 with the redshift (z) and Early Universe Spectrometer (ZEUS), a new submillimeter grating spectrometer. This is the first extragalactic detection of the 13CO(J=6-5) transition, which traces warm, dense molecular gas. We employ a multi-line LVG analysis and find ~ 35% - 60% of the molecular ISM is both warm (T ~ 110 K) and dense (n(H2) ~ 10^4 cm^-3). We analyze the potential heat sources, and conclude that UV and X-ray photons are unlikely to be energetically important. Instead, the molecular gas is most likely heated by an elevated density of cosmic rays or by the decay of supersonic turbulence through shocks. If the cosmic rays and turbulence are created by stellar feedback within the starburst, then our analysis suggests the starburst may be self-limiting.Comment: 4 pages, 2 figures, accepted by ApJ Letter

    Structure and Dynamics of the Globular Cluster Palomar 13

    Get PDF
    We present Keck/DEIMOS spectroscopy and Canada-France-Hawaii Telescope/MegaCam photometry for the Milky Way globular cluster Palomar 13. We triple the number of spectroscopically confirmed members, including many repeat velocity measurements. Palomar 13 is the only known globular cluster with possible evidence for dark matter, based on a Keck/High Resolution Echelle Spectrometer 21 star velocity dispersion of σ = 2.2 ± 0.4 km s^(–1). We reproduce this measurement, but demonstrate that it is inflated by unresolved binary stars. For our sample of 61 stars, the velocity dispersion is σ = 0.7^(+0.6)_(–0.5) km s^(–1). Combining our DEIMOS data with literature values, our final velocity dispersion is σ = 0.4^(+0.4)_( –0.3) km s^(–1). We determine a spectroscopic metallicity of [Fe/H] = –1.6 ± 0.1 dex, placing a 1σ upper limit of σ_([Fe/H]) ~ 0.2 dex on any internal metallicity spread. We determine Palomar 13's total luminosity to be M_V = –2.8 ± 0.4, making it among the least luminous known globular clusters. The photometric isophotes are regular out to the half-light radius and mildly irregular outside this radius. The outer surface brightness profile slope is shallower than typical globular clusters (ÎŁ α r^η, η = –2.8 ± 0.3). Thus at large radius, tidal debris is likely affecting the appearance of Palomar 13. Combining our luminosity with the intrinsic velocity dispersion, we find a dynamical mass of M_(1/2) = 1.3^(+2:7)_(–1.3) × 10^3 M_☉ and a mass-to-light ratio of M/L_V = 2.4^(+5.0)_(–2.4) M_☉/L_☉. Within our measurement errors, the mass-to-light ratio agrees with the theoretical predictions for a single stellar population. We conclude that, while there is some evidence for tidal stripping at large radius, the dynamical mass of Palomar 13 is consistent with its stellar mass and neither significant dark matter, nor extreme tidal heating, is required to explain the cluster dynamics

    A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths

    Full text link
    We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector arrays for millimeter-wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously-characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured response and noise properties of LEKID arrays with and without the TiN mesh. For this test, the LEKIDs were illuminated with an adjustable, incoherent electronic millimeter-wave source. Our measurements show that the optical crosstalk in the LEKID array with the TiN absorber is reduced by 66\% on average, so the approach is effective and a viable candidate for future kilo-pixel arrays.Comment: 7 pages, 5 figures, accepted for publication in the Journal of Low Temperature Physic

    Abundances in Stars from the Red Giant Branch Tip to the Near the Main Sequence in M71: I. Sample Selection, Observing Strategy and Stellar Parameters

    Full text link
    We present the sample for an abundance analysis of 25 members of M71 with luminosities ranging from the red giant branch tip to the upper main sequence. The spectra are of high dispersion and of high precision. We describe the observing strategy and determine the stellar parameters for the sample stars using both broad band colors and fits of Hα\alpha profiles. The derived stellar parameters agree with those from the Yale2^2 stellar evolutionary tracks to within 50 -- 100K for a fixed log g, which is within the level of the uncertainties.Comment: Minor changes to conform to version accepted for publication, with several new figures (Paper 1 of a pair

    The surface of Mars 3. Light and dark markings

    Get PDF
    The Mariner 6 and 7 pictures have provided significant clues to the nature of the light and dark markings on Mars, but do not yet provide an adequate foundation for any complete explanation of the phenomena. They display detail never before seen or photographed and demonstrate that there is no network of dark lines (i.e. canals) on the planet. A variety of shapes and of boundaries between major markings are recorded in the pictures. No substantial correlation of albedo markings with cratered or chaotic terrain has been recognized; featureless terrain conceivably may be genetically related to light areas. Within and surrounding the dark area Meridiani Sinus there is evidence of local topographic control of albedo markings; light material is found in locally low areas. Also, characteristic patterns of local albedo markings are exhibited by craters there. Aeolian transportation of light material with deposition locally in low areas is suggested as an explanation of these markings and may be useful as a working hypothesis for subsequent exploration. Across some light/dark boundaries crater morphologies are unchanged; across others craters in the light area appear smoother. If there is a relationship between cratered terrain modification and surface albedo it is an indirect one

    Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition

    Get PDF
    Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.Comment: 16 page

    The Far-Ultraviolet Spectrum and Short Timescale Variability of AM Herculis from Observations with the Hopkins Ultraviolet Telescope

    Get PDF
    Using the Hopkins Ultraviolet Telescope (HUT), we have obtained 850-1850 angstrom spectra of the magnetic cataclysmic variable star AM Her in the high state. These observations provide high time resolution spectra of AM Her in the FUV and sample much of the orbital period of the system. The spectra are not well-modelled in terms of simple white dwarf (WD) atmospheres, especially at wavelengths shortward of Lyman alpha. The continuum flux changes by a factor of 2 near the Lyman limit as a function of orbital phase; the peak fluxes are observed near magnetic phase 0.6 when the accreting pole of the WD is most clearly visible. The spectrum of the hotspot can be modelled in terms of a 100 000 K WD atmosphere covering 2% of the WD surface. The high time resolution of the HUT data allows an analysis of the short term variability and shows the UV luminosity to change by as much as 50% on timescales as short as 10 s. This rapid variability is shown to be inconsistent with the clumpy accretion model proposed to account for the soft X-ray excess in polars. We see an increase in narrow line emission during these flares when the heated face of the secondary is in view. The He II narrow line flux is partially eclipsed at secondary conjunction, implying that the inclination of the system is greater than 45 degrees. We also present results from models of the heated face of the secondary. These models show that reprocessing on the face of the secondary star of X-ray/EUV emission from the accretion region near the WD can account for the intensities and kinematics of most of the narrow line components observed.Comment: 19 pp., 12 fig., 3 tbl. To appear in The Astrophysical Journal. Also available at http://greeley.pha.jhu.edu/papers/amherpp.ps.g

    A FIR-Survey of TNOs and Related Bodies

    Get PDF
    The small solar-system bodies that reside between 30 and 50 AU are often referred to as the Trans Neptunian Objects, or TNOs. A far-infrared (FIR) mission with survey capabilities, like the prospective Cryogenic Aperture Large Infrared Space Telescope Observatory (CALISTO; Goldsmith et al. 2008), offers the potential for the first time of really probing the population of TNOs, and related populations, down to moderates sizes, and out to distances exceeding 100 AU from the Sun.Comment: 3 pages, 1 figure, a short whitepaper submitted in response to the Cosmic Origins Program Analysis Group Call for White Papers, in anticipation of the Far IR Surveyor Workshop, June 3rd - 5th 2015 at Caltech's Beckman Institute, Pasadena, Californi
    • 

    corecore