25 research outputs found

    Detection of peptide-based nanoparticles in blood plasma by ELISA

    Get PDF
    Aims: The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods: A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results: The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl meth-acrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions: We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions

    Antibody-Directed Lentiviral Gene Transduction for Live-Cell Monitoring and Selection of Human iPS and hES Cells

    Get PDF
    The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology–in particular, in the identification of induced pluripotent stem (iPS) cells during the reprogramming process. Based on the selective expression of stem cell surface markers, a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts, allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES) cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells, but that specific genes, including positive and negative selection markers, regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies

    Dissection of pathways leading to antigen receptor-induced and Fas/CD95-induced apoptosis in human B cells

    No full text
    To dissect intracellular pathways involved in B cell Ag receptor (BCR)-mediated and Fas-induced human B cell death, we isolated clones of the Burkitt lymphoma cell line Ramos with different apoptosis sensitivities. Selection for sensitivity to Fas-induced apoptosis also selected for clones with enhanced BCR death sensitivity and vice versa. In contrast, clones resistant to Fas-mediated apoptosis could still undergo BCR-induced cell death. Based on the functional phenotypes of these clones, we hypothesized that both receptor-induced apoptosis pathways are initially distinct but may eventually converge. Indeed, ligation of both Fas and BCR resulted in cleavage of the IL-1beta-converting enzyme/Ced-3-like protease caspase 3 and its substrates Ac-Asp-Glu-Val-Asp-aldehyde and poly(ADP-ribose) polymerase. Markedly, qualitative differences in the caspase 3 cleavage pattern induced by Fas or BCR ligation were observed; whereas Fas ligation generated caspase 3 cleavage products of 19/20 and 17 kDa, only the latter cleavage product was found upon BCR cross-linking. The caspase inhibitor Val-Ala-Asp-fluoromethylketone blocked both Fas- and BCR-mediated apoptosis, but differentially affected caspase 3 cleavage induced by either stimulus. Finally, overexpression of a Fas-associated death domain (FADD) dominant-negative mutant protein was found to inhibit Fas-induced apoptosis but not BCR-induced apoptosis. Together our findings imply that Fas and BCR couple, via FADD-dependent and FADD-independent mechanisms, respectively, to distinct proteases upstream of caspase

    Dual Residence of Companies under Tax Treaties

    No full text
    This article provides critical re\ufb02ections on the 2017 revision of article 4(3) of the OECD Model Convention and its Commentary regarding dual residence of persons other than individuals. These changes and their implementation warrant an assessment of their desirability, including an in-depth review of their impact on other provisions of the OECD Model, as well as the (re)consideration of alternative mechanisms to resolve dual-residence situations. In the light of the above, this article provides a comprehensive analysis of the evolution of rules governing dual residence of companies formed by incorporation and addresses, from a policy as well as a legal perspective, the main criticalities associated with the above-mentioned revisions, most notably the overarching legal uncertainty that such amendments may generate, the potential instances of international double taxation that may arise therefrom and the excessive discretion with which competent authorities would be entrusted in dealing with the matter, a circumstance against which taxpayers may be left with very limited judicial remedies
    corecore