496 research outputs found

    Auxiliary titanium sublimation pump produces ultrahigh /10 to the minus 11 torr/ vacuum

    Get PDF
    Sublimated titanium as a gettering agent in conjunction with a turbine-type pump provides a two-step procedure for obtaining an ultrahigh vacuum of 10 to the minus 11 torr. The pump alone evacuates the chamber to a pressure of 10 to the minus 9 torr. The residual gas is removed by the gettering agent at a pumping speed of 15 liters per second per square inch

    Effect of vacuum processing on outgassing within an orbiting molecular shield

    Get PDF
    The limiting hydrogen number density in an orbiting molecular shield is highly dependent on the outgassing rates from the materials of construction for the shield, experimental apparatus, and other hardware contained within the shield. Ordinary degassing temperatures used for ultrahigh vacuum studies (less than 450 C) are not sufficient to process metals so that the contribution to the number density within the shield due to outgassing is less than the theoretically attainable level (approximately 200 per cu. cm). Pure aluminum and type 347 stainless steel were studied as candidate shield materials. Measurements of their hydrogen concentration and diffusion coefficients were made, and the effects of high temperature vacuum processing (greater than 600 C) on their resulting outgassing rates was determined. The densities in a molecular shield due to the outgassing from either metal were substantially less ( 0.003) than the density due to the ambient atomic hydrogen flux at an orbital altitude of 500 km

    Physical adsorption of nitrogen gas on the polished surface of 347 stainless steel at very low pressures

    Get PDF
    Physical adsorption of nitrogen gas on polished surface of 347 stainless steel at low pressure

    Introduction to total- and partial-pressure measurements in vacuum systems

    Get PDF
    An introduction to the fundamentals of total and partial pressure measurement in the vacuum regime (760 x 10 to the -16th power Torr) is presented. The instrument most often used in scientific fields requiring vacuum measurement are discussed with special emphasis on ionization type gauges and quadrupole mass spectrometers. Some attention is also given to potential errors in measurement as well as calibration techniques

    Growth of high-quality thin-film Ge single crystals by plasma-enhanced chemical vapor deposition

    Get PDF
    Thin-film Ge single crystals (approx. 10 microns) have been epitaxially grown on polished NaCl(100) substrates at 450C by using plasma-enhanced chemical vapor deposition. Films on approximately 1 sq cm and larger were separated from the NaCl by either melting the salt or by differential shear stress upon cooling to room temperature. The ordered growth of the Ge was found to be most sensitive to the initial plasma power and to the continuum flow dynamics within the carbon susceptor. The films were visually specular and exhibited a high degree of crysalline order when examined by X-ray diffraction. The films were found to be p-type with a carrier concentration of approximately 3 x 10 to the 16th power/cu cm, a resistivity of 0.11 ohm-cm, and a Hall hole mobility of 1820 sq cm/v/s at room temperature. Vacuum firing minimized the primary contaminant, Na, and corresponding lowered the carrier concentration to 4 x 10 to the 14th power/cu cm

    Method for producing an atomic oxygen beam

    Get PDF
    A method for producing an atomic oxygen beam is provided by the present invention. First, a material 10' is provided which dissociates molecular oxygen and dissolves atomic oxygen into its bulk. Next, molecular oxygen is exposed to entrance surface 11' of material 10'. Next, material 10' is heated by heater 17' to facilitate the permeation of atomic oxygen through material 10' to the UHV side 12'. UHV side 12' is interfaced with an ultra-high vacuum (UHV) environment provided by UHV pump 15'. The atomic oxygen on the UHV side 12' is excited to a non-binding state by exciter 14' thus producing the release of atomic oxygen to form an atomic oxygen beam 35'

    Surface effects on hydrogen permeation through Ti-14Al-21Nb alloy

    Get PDF
    Hydrogen transport through Ti-14Al-21Nb (wt percent) alloy is measured using ultrahigh vacuum permeation techniques over the temperature range of 500 to 900 C and hydrogen pressure range of 0.25 to 10 torr. Hydrogen permeability through the alloy can be described through two different mechanisms depending on th temperature of exposure. In the 675 to 900 C range, the process is diffusion-limited: the permeability has a weak temperature dependence, but the diffusivity has a strong temperature dependence. Below 675 C, the permeation rate of hydrogen is very sensitive to surface controlled processes such as the formation of a barrier layer from contaminants. A physical model explaining the role of surface films on the transport of hydrogen through Ti-14Al-21Nb alloy was described

    A simple model of proton damage in GaAs solar cells

    Get PDF
    A simple proton damage model for GaAs solar cells is derived and compared to experimental values of change in short circuit currents. The recombination cross section associated with the defects was determined from the experimental comparison to be approximately 1.2 x 10 to the -13th power sq cm in fair agreement with values determined from the deep level transient spectroscopy technique

    Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    Get PDF
    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent

    Permeation of oxygen through high purity, large grain silver

    Get PDF
    The permeation of high purity, large grain Ag membranes by oxygen has been studied over the temperature range 400 to 800 C. The permeability was found to be quite linear and repeatable, but the magnitude was 3.2 times smaller than that determined by past research. Since previous investigators studied substantially less pure Ag and conducted experiments within much poorer vacuum environments (which indicates that their grain boundary density was much greater), the data presented here suggest oxygen transport through the membrane is primarily by grain boundary diffusion. The diffusivity measurements were found to exhibit two distinct linear regions, one above and one below a critical temperature of 630 C. The high-temperature data have an activation energy (11.1 kcal/mole) similar to that reported by others, but the low-temperature data have a higher activation energy (15.3 kcal/mole), which can be explained by impurity trapping in the grain boundaries. Vacuum desorption of the oxygen-saturated Ag was found to occur at a threshold of 630 C, which is consistent with the onset of increased mobility within the grain boundaries
    corecore