1,153 research outputs found
Systematic derivation of a surface polarization model for planar perovskite solar cells
Increasing evidence suggests that the presence of mobile ions in perovskite
solar cells can cause a current-voltage curve hysteresis. Steady state and
transient current-voltage characteristics of a planar metal halide
CHNHPbI perovskite solar cell are analysed with a drift-diffusion
model that accounts for both charge transport and ion vacancy motion. The high
ion vacancy density within the perovskite layer gives rise to narrow Debye
layers (typical width 2nm), adjacent to the interfaces with the transport
layers, over which large drops in the electric potential occur and in which
significant charge is stored. Large disparities between (I) the width of the
Debye layers and that of the perovskite layer (600nm) and (II) the ion
vacancy density and the charge carrier densities motivate an asymptotic
approach to solving the model, while the stiffness of the equations renders
standard solution methods unreliable. We derive a simplified surface
polarisation model in which the slow ion dynamic are replaced by interfacial
(nonlinear) capacitances at the perovskite interfaces. Favourable comparison is
made between the results of the asymptotic approach and numerical solutions for
a realistic cell over a wide range of operating conditions of practical
interest.Comment: 32 pages, 7 figure
Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system
The giant fiber system (GFS) is a simple network of neurons that mediates visually elicited escape behavior in Drosophila. The giant fiber (GF), the major component of the system, is a large, descending interneuron that relays visual stimuli to the motoneurons that innervate the tergotrochanteral jump muscle (TTM) and dorsal longitudinal flight muscles (DLMs). Mutations in the neural transcript from the shaking-B locus abolish the behavioral response by disrupting transmission at some electrical synapses in the GFS. This study focuses on the role of the gene in the development of the synaptic connections. Using an enhancer-trap line that expresses lacZ in the GFs, we show that the neurons develop during the first 30 hr of metamorphosis. Within the next 15 hr, they begin to form electrical synapses, as indicated by the transfer of intracellularly injected Lucifer yellow. The GFs dye-couple to the TTM motoneuron between 30 and 45 hr of metamorphosis, to the peripherally synapsing interneuron that drives the DLM motoneurons at approximately 48 hr, and to giant commissural interneurons in the brain at approximately 55 hr. Immunocytochemistry with shaking-B peptide antisera demonstrates that the expression of shaking-B protein in the region of GFS synapses coincides temporally with the onset of synaptogenesis; expression persists thereafter. The mutation shak-B2, which eliminates protein expression, prevents the establishment of dye coupling shaking-B, therefore, is essential for the assembly and/or maintenance of functional gap junctions at electrical synapses in the GFS
Running: A Flexible Situated Study
This paper describes a situated study of personal informatics applications for running that had to be conducted in a flexible and pragmatic way to adjust for the context of use. A qualitative situated study highlighted important differences in runners' motivations, uncovering markedly different uses and preferences between people who run either for health or for pleasure, but also underscored how the physical nature of the interaction impacted data collection. By adjusting the method to be sensitive to the physical nature of the interaction and the preferences of the participants, a pragmatic situated approach provided insights into how these technologies are actually used
Advances in DIY Health and Wellbeing
The choice of consumer healthcare and wellbeing technologies has never been greater, and the introduction of consumer wearable technologies and inexpensive sensor kits means that developing bespoke personalized health devices is now possible. For example, there is a growing community making DIY diabetes technologies and the trend is spreading to other health areas where people want to design, customize, manufacture and disseminate their own DIY health and wellbeing technologies. Although the CHI community has started to investigate these trends, the pace that motivated open-source health 'makers' and 'hackers' are developing technologies means that there is a need to bring together researchers to discuss the HCI implications of this changing landscape
Five-year review of absconding in three acute psychiatric inpatient wards in Australia
Author accepted manuscript (Post-Print) made available in accordance with publisher copyright policy. Under 12 month embargo, available from 2 February 2016
Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial
<p>(<b>A</b>) Immunofluorescence signal for dystrophin is significantly reduced in the SSI heart (bottom left panel) compared with the immunofluorescent signal in the SHAM heart (upper left panel), and the SHAM+ALLN (upper right panel) and SSI+ALLN (bottom right panel) myocardium. (<b>B</b>) Protein levels of dystrophin in the SHAM, SSI, SHAM+ALLN and SSI+ALLN hearts were measured 24 h after the CLP procedure and were expressed in arbitrary units (AUs). α-Tubulin was used to determine equivalent loading conditions. The results (n = 6 per group) are representative of three different experiments. Scale bars indicate 50 μm.</p
- …
