94 research outputs found

    Holographic Flavor Transport in Arbitrary Constant Background Fields

    Full text link
    We use gauge-gravity duality to compute a new transport coefficient associated with a number Nf of massive N=2 supersymmetric hypermultiplet fields propagating through an N=4 SU(Nc) super-Yang-Mills theory plasma in the limits of large Nc and large 't Hooft coupling, with Nf << Nc. We introduce a baryon number density as well as arbitrary constant electric and magnetic fields, generalizing previous calculations by including a magnetic field with a component parallel to the electric field. We can thus compute all components of the conductivity tensor associated with transport of baryon number charge, including a component never before calculated in gauge-gravity duality. We also compute the contribution that the flavor degrees of freedom make to the stress-energy tensor, which exhibits divergences associated with the rates of energy and momentum loss of the flavor degrees of freedom. We discuss two currents that are free from these divergences, one of which becomes anomalous when the magnetic field has a component parallel to the electric field and hence may be related to recent study of charge transport in the presence of anomalies.Comment: 27 page

    The Stress-Energy Tensor of Flavor Fields from AdS/CFT

    Full text link
    We use the AdS/CFT correspondence to study the transport properties of massive N=2 hypermultiplet fields in an N=4 SU(Nc) super-Yang-Mills theory plasma in the large Nc, large 't Hooft coupling limit, and in the presence of a baryon number chemical potential and external electric and magnetic fields. In particular, we compute the flavor fields' contribution to the stress-energy tensor. We find infrared divergences in the stress-energy tensor, arising from the flavor fields' constant rate of energy and momentum loss. We regulate these divergences and extract the energy and momentum loss rates from the divergent terms. We also check our result in various limits in which the divergences are absent. The supergravity dual is a system of D7-branes, with a particular configuration of worldvolume fields, probing an AdS-Schwarzschild background. The supergravity calculation amounts to computing the stress-energy tensor of the D7-branes.Comment: 32 pages; v2, added one footnote in section 2.2, added one reference, version published in JHE

    Spinning Dragging Strings

    Full text link
    We use the AdS/CFT correspondence to compute the drag force experienced by a heavy quark moving through a maximally supersymmetric SU(N) super Yang-Mills plasma at nonzero temperature and R-charge chemical potential and at large 't Hooft coupling. We resolve a discrepancy in the literature between two earlier studies of such quarks. In addition, we consider small fluctuations of the spinning strings dual to these probe quarks and find no evidence of instabilities. We make some comments about suitable D7-brane boundary conditions for the dual strings.Comment: 25 pages, 4 figures; v2 refs added; v3 to appear in JHEP, clarifying comment

    Holographic Thermodynamics at Finite Baryon Density: Some Exact Results

    Full text link
    We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplets coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory in the limits of large Nc and large 't Hooft coupling. In particular, we study the theory at finite baryon number density. At zero temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy, and in the supergravity description we clarify which D-brane configuration is appropriate for any given value of the chemical potential. We find a second-order phase transition when the chemical potential equals the mass. At finite temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy at zero mass.Comment: 21 pages, 1 figure; v2 corrected typos, added comments to sections 2.2 and 2.

    Critical Exponents from AdS/CFT with Flavor

    Full text link
    We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplet flavor fields coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory, formulated on curved four-manifolds, in the limits of large Nc and large 't Hooft coupling. The gravitational duals are probe D-branes in global thermal AdS. These D-branes may undergo a topology-changing transition in the bulk. The D-brane embeddings near the point of the topology change exhibit a scaling symmetry. The associated scaling exponents can be either real- or complex-valued. Which regime applies depends on the dimensionality of a collapsing submanifold in the critical embedding. When the scaling exponents are complex-valued, a first-order transition associated with the flavor fields appears in the dual field theory. Real scaling exponents are expected to be associated with a continuous transition in the dual field theory. For one example with real exponents, the D7-brane, we study the transition in detail. We find two field theory observables that diverge at the critical point, and we compute the associated critical exponents. We also present analytic and numerical evidence that the transition expresses itself in the meson spectrum as a non-analyticity at the critical point. We argue that the transition we study is a true phase transition only when the 't Hooft coupling is strictly infinite.Comment: 31 pages, 21 eps files in 12 figures; v2 added one reference and one footnote, version published in JHE

    Hot Defect Superconformal Field Theory in an External Magnetic Field

    Get PDF
    In this paper we investigate the influence of an external magnetic field on a flavoured holographic gauge theory dual to the D3/D5 intersection at finite temperature. Our study shows that the external magnetic field has a freezing effect on the confinement/ deconfinement phase transition. We construct the corresponding phase diagram. We investigate some thermodynamic quantities of the theory. A study of the entropy reveals enhanced relative jump of the entropy at the "chiral" phase transition. A study of the magnetization shows that both the confined and deconfined phases exhibit diamagnetic response. The diamagnetic response in the deconfined phase has a stronger temperature dependence reflecting the temperature dependence of the conductivity. We study the meson spectrum of the theory and analyze the stability of the different phases looking at both normal and quasi-normal semi-classical excitations. For the symmetry breaking phase we analyze the corresponding pseudo-Goldstone modes and prove that they satisfy non-relativistic dispersion relation.Comment: 42 pages, 14 figure

    Universal Holographic Chiral Dynamics in an External Magnetic Field

    Get PDF
    In this work we further extend the investigation of holographic gauge theories in external magnetic fields, continuing earlier work. We study the phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions, using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy effective actions of the corresponding pseudo Goldstone bosons and study their dispersion relations. The D3/D7 system exhibits the usual Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion relation, while the D3/D5 system exhibits a quadratic non-relativistic dispersion relation and a modified linear GMOR relation. The low energy effective action of the D3/D5 system is related to that describing magnon excitations in a ferromagnet. We also study properties of general Dp/Dq systems in an external magnetic field and verify the universality of the magnetic catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde

    Holographic conductivity of zero temperature superconductors

    Get PDF
    Using the recently found by G. Horowitz and M. Roberts (arXiv:0908.3677) numerical model of the ground state of holographic superconductors (at zero temperature), we calculate the conductivity for such models. The universal relation connecting conductivity with the reflection coefficient was used for finding the conductivity by the WKB approach. The dependence of the conductivity on the frequency and charge density is discussed. Numerical calculations confirm the general arguments of (arXiv:0908.3677) in favor of non-zero conductivity even at zero temperature. In addition to the Horowitz-Roberts solution we have found (probably infinite) set of extra solutions which are normalizable and reach the same correct RN-AdS asymptotic at spatial infinity. These extra solutions (which correspond to larger values of the grand canonical potential) lead to effective potentials that also vanish at the horizon and thus correspond to a non-zero conductivity at zero temperature.Comment: 9 pages, 10 figure

    Boundary and defect CFT: Open problems and applications

    Get PDF
    A review of Boundary and defect conformal field theory: open problems and applications, following a workshop held at Chicheley Hall, Buckinghamshire, UK, 7–8 Sept. 2017. We attempt to provide a broad, bird’s-eye view of the latest progress in boundary and defect conformal field theory in various sub-fields of theoretical physics, including the renormalization group, integrability, conformal bootstrap, topological field theory, supersymmetry, holographic duality, and more. We also discuss open questions and promising research directions in each of these sub-fields, and combinations thereof
    corecore