20 research outputs found

    Use of a radiopaque localizer grid to reduce radiation exposure

    Get PDF
    Abstract Background Minimally invasive spine surgery requires placement of the skin incision at an ideal location in the patient's back by the surgeon. However, numerous fluoroscopic x-ray images are sometimes required to find the site of entry, thereby exposing patients and Operating Room personnel to additional radiation. To minimize this exposure, a radiopaque localizer grid was devised to increase planning efficiency and reduce radiation exposure. Results The radiopaque localizer grid was utilized to plan the point of entry for minimally invasive spine surgery. Use of the grid allowed the surgeon to accurately pinpoint the ideal entry point for the procedure with just one or two fluoroscopic X-ray images. Conclusions The reusable localizer grid is a simple and practical device that may be utilized to more efficiently plan an entry site on the skin, thus reducing radiation exposure. This device or a modified version may be utilized for any procedure involving the spine

    Image-guided surgery and craniofacial applications: mastering the unseen

    Get PDF

    Pedicle Screw Surgery in the UK and Ireland: A Questionnaire Study

    Get PDF
    Pedicle screw (PS) malpositioning rates are high in spine surgery. This has resulted in the use of computed navigational aids to reduce the rate of malposition; but these are often expensive and limited in availability. A simple mechanical device to aid PS insertion might overcome some of these disadvantages. The purpose of this study was to determine the demand and design criteria for a simple device to aid PS placement, as well as to collect opinions and experiences on PS surgery in the UK and Ireland. A postal questionnaire was sent to 422 spinal surgeons in the UK and Ireland. 101 questionnaires were received; 67 of these (16% of total sent) contained useful information. 78% of surgeons experienced problems with PS placement. The need for a simple mechanical device to aid PS placement was expressed by 59% of respondent surgeons. The proportion of respondents that inserted PSs in the cervical spine was 14%; PSs are mainly inserted in the thoracic, lumbar and sacral spine, but potential exists for a PS placement aid for the cervical and thoracic spine. From the experiences of these 67 surgeons, there is evidence to suggest that surgeons would prefer a pedicle aid that is multiple use, one-piece, hand-held, radiolucent, unilateral and uses the line of sight principle in traditional open surgery. Based on the experiences of 67 surgeons, there is evidence to suggest that computed navigational aids are not readily used in PS surgery and that a simple mechanical device could be a better option. This paper provides useful data for improving the outcomes of spinal surgery

    X-Ray Absorption Study of the High-Spin/Low-Spin Transition in [Fe(II)(bpp)2](BF4)2

    No full text
    We employed both the Fe-K XANES and EXAFS to study the HS/LS transition in [Fe(II)(bpp)2](BF4)2

    X-Ray Absorption Study of the High-Spin/Low-Spin Transition in [Fe(II)(bpp)2](BF4)2\mathrm{[Fe(II)(bpp)_2](BF_4)_2}

    No full text
    We employed both the Fe-K XANES and EXAFS to study the HS/LS transition in [Fe(II)(bpp)2](BF4)2

    Autologous olfactory ensheathing cell transplantation in human spinal cord injury.

    No full text
    Olfactory ensheathing cells transplanted into the injured spinal cord in animals promote regeneration and remyelination of descending motor pathways through the site of injury and the return of motor functions. In a single-blind, Phase I clinical trial, we aimed to test the feasibility and safety of transplantation of autologous olfactory ensheathing cells into the injured spinal cord in human paraplegia. Participants were three male paraplegics, 18-55 years of age, with stable, complete thoracic injuries 6-32 months previously, with stable spinal column, no implanted prostheses, and no syrinx. Olfactory ensheathing cells were grown and purified in vitro from nasal biopsies and injected into the region of damaged spinal cord. The trial design includes a matched injury group as a control for the assessors, who are blind to treatment status. Assessments, made before transplantation and at regular intervals subsequently, include MRI, medical, neurological and psychosocial assessments, and standard American Spinal Injury Association and Functional Independence Measure assessments. One year after cell implantation, there were no medical, surgical or other complications to indicate that the procedure is unsafe. There is no evidence of spinal cord damage nor of cyst, syrinx or tumour formation. There was no neuropathic pain reported by the participants, no change in psychosocial status and no evidence of deterioration in neurological status. Participants will be followed for 3 years to confirm long-term safety and to compare neurological, functional and psychosocial outcomes with the control group. We conclude transplantation of autologous olfactory ensheathing cells into the injured spinal cord is feasible and is safe up to one year post-implantation.No Full Tex
    corecore