36,944 research outputs found
Binary Pulsar Constraints on the Parameterized post-Einsteinian Framework
We constrain the parameterized post-Einsteinian framework with binary pulsar
observations of orbital period decay due to gravitational wave emission. This
framework proposes to enhance the amplitude and phase of gravitational waveform
templates through post-Einsteinian parameters to search for generic deviations
from General Relativity in gravitational wave data. Such enhancements
interpolate between General Relativity and alternative theory predictions, but
their magnitude must be such as to satisfy all current experiments and
observations. The data that currently constrains the parameterized
post-Einsteinian framework the most is the orbital period decay of binary
pulsars. We use such observations to place upper limits on the magnitude of
post-Einsteinian parameters, which will be critical when gravitational waves
are detected and this framework is implemented.Comment: 4 pages, 2 figures, submitted to Phys. Rev.
Can one see entanglement ?
The human eye can detect optical signals containing only a few photons. We
investigate the possibility to demonstrate entanglement with such biological
detectors. While one person could not detect entanglement by simply observing
photons, we discuss the possibility for several observers to demonstrate
entanglement in a Bell-type experiment, in which standard detectors are
replaced by human eyes. Using a toy model for biological detectors that
captures their main characteristic, namely a detection threshold, we show that
Bell inequalities can be violated, thus demonstrating entanglement. Remarkably,
when the response function of the detector is close to a step function, quantum
non-locality can be demonstrated without any further assumptions. For smoother
response functions, as for the human eye, post-selection is required.Comment: 5 pages, 5 figure
Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization
In this paper, we study the nonnegative matrix factorization problem under
the separability assumption (that is, there exists a cone spanned by a small
subset of the columns of the input nonnegative data matrix containing all
columns), which is equivalent to the hyperspectral unmixing problem under the
linear mixing model and the pure-pixel assumption. We present a family of fast
recursive algorithms, and prove they are robust under any small perturbations
of the input data matrix. This family generalizes several existing
hyperspectral unmixing algorithms and hence provides for the first time a
theoretical justification of their better practical performance.Comment: 30 pages, 2 figures, 7 tables. Main change: Improvement of the bound
of the main theorem (Th. 3), replacing r with sqrt(r
Unmanned Aerial Systems for Wildland and Forest Fires
Wildfires represent an important natural risk causing economic losses, human
death and important environmental damage. In recent years, we witness an
increase in fire intensity and frequency. Research has been conducted towards
the development of dedicated solutions for wildland and forest fire assistance
and fighting. Systems were proposed for the remote detection and tracking of
fires. These systems have shown improvements in the area of efficient data
collection and fire characterization within small scale environments. However,
wildfires cover large areas making some of the proposed ground-based systems
unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial
Systems (UAS) were proposed. UAS have proven to be useful due to their
maneuverability, allowing for the implementation of remote sensing, allocation
strategies and task planning. They can provide a low-cost alternative for the
prevention, detection and real-time support of firefighting. In this paper we
review previous work related to the use of UAS in wildfires. Onboard sensor
instruments, fire perception algorithms and coordination strategies are
considered. In addition, we present some of the recent frameworks proposing the
use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more
efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at:
https://doi.org/10.3390/drones501001
Temporal-mode continuous-variable cluster states using linear optics
I present an extensible experimental design for optical continuous-variable
cluster states of arbitrary size using four offline (vacuum) squeezers and six
beamsplitters. This method has all the advantages of a temporal-mode encoding
[Phys. Rev. Lett. 104, 250503], including finite requirements for coherence and
stability even as the computation length increases indefinitely, with none of
the difficulty of inline squeezing. The extensibility stems from a construction
based on Gaussian projected entangled pair states (GPEPS). The potential for
use of this design within a fully fault tolerant model is discussed.Comment: 9 pages, 19 color figure
- …