3,436 research outputs found

    Entropy considerations in constraining the mSUGRA parameter space

    Full text link
    We explore the use of two criteria to constraint the allowed parameter space in mSUGRA models. Both criteria are based in the calculation of the present density of neutralinos as dark matter in the Universe. The first one is the usual ``abundance'' criterion which is used to calculate the relic density after the ``freeze-out'' era. To compute the relic density we used the numerical public code micrOMEGAs. The second criterion applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas evaluating then the change in the entropy per particle of this gas between the ``freeze-out'' era and present day virialized structures. An ``entropy-consistency'' criterion emerges by comparing theoretical and empirical estimates of this entropy. The main objective of our work is to determine for which regions of the parameter space in the mSUGRA model are both criteria consistent with the 2σ\sigma bounds according to WMAP for the relic density: 0.0945<ΩCDMh2<0.12870.0945<\Omega_{CDM}h^2<0.1287. As a first result, we found that for A0=0A_0=0, sgnμ=+\mu=+, small values of tanβ\beta are not favored; only for tanβ50\beta\simeq50 are both criteria significantly consistent.Comment: 5 pages, 1 figure. To appear in the Proceedings of X Mexican Workshop on Particles and Fields, Morelia Michoac\'an, M\'exico, November 7-12, 200

    Criticality and phase separation in a two-dimensional binary colloidal fluid induced by the solvent critical behavior

    Get PDF
    We present an experimental and theoretical study of the phase behavior of a binary mixture of colloids with opposite adsorption preferences in a critical solvent. As a result of the attractive and repulsive critical Casimir forces, the critical fluctuations of the solvent lead to a further critical point in the colloidal system, i.e. to a critical colloidal-liquid--colloidal-liquid demixing phase transition which is controlled by the solvent temperature. Our experimental findings are in good agreement with calculations based on a simple approximation for the free energy of the system.Comment: 5 pages, 5 figures, to be published in Europhysics Letter

    Thermal effects on the absorption of ultra-high energy neutrinos by the cosmic neutrino background

    Full text link
    We use the formalism of finite-temperature field theory to study the interactions of ultra-high energy (UHE) cosmic neutrinos with the background of relic neutrinos and to derive general expressions for the UHE neutrino transmission probability. This approach allows us to take into account the thermal effects introduced by the momentum distribution of the relic neutrinos. We compare our results with the approximate expressions existing in the literature and discuss the influence of thermal effects on the absorption dips in the context of favoured neutrino mass schemes, as well as in the case of clustered relic neutrinos.Comment: 3 pages, 2 figures. Prepared for the Proceedings of the 9th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2005), Zaragoza (Spain), September 10-14, 200

    Tunability of Critical Casimir Interactions by Boundary Conditions

    Full text link
    We experimentally demonstrate that critical Casimir forces in colloidal systems can be continuously tuned by the choice of boundary conditions. The interaction potential of a colloidal particle in a mixture of water and 2,6-lutidine has been measured above a substrate with a gradient in its preferential adsorption properties for the mixture's components. We find that the interaction potentials at constant temperature but different positions relative to the gradient continuously change from attraction to repulsion. This demonstrates that critical Casimir forces respond not only to minute temperature changes but also to small changes in the surface properties.Comment: 4 figures; http://www.iop.org/EJ/article/0295-5075/88/2/26001/epl_88_2_26001.htm

    The Offline Software Framework of the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is designed to unveil the nature and the origins of the highest energy cosmic rays. The large and geographically dispersed collaboration of physicists and the wide-ranging collection of simulation and reconstruction tasks pose some special challenges for the offline analysis software. We have designed and implemented a general purpose framework which allows collaborators to contribute algorithms and sequencing instructions to build up the variety of applications they require. The framework includes machinery to manage these user codes, to organize the abundance of user-contributed configuration files, to facilitate multi-format file handling, and to provide access to event and time-dependent detector information which can reside in various data sources. A number of utilities are also provided, including a novel geometry package which allows manipulation of abstract geometrical objects independent of coordinate system choice. The framework is implemented in C++, and takes advantage of object oriented design and common open source tools, while keeping the user side simple enough for C++ novices to learn in a reasonable time. The distribution system incorporates unit and acceptance testing in order to support rapid development of both the core framework and contributed user code.Comment: 4 pages, 2 figures, presented at IEEE NSS/MIC, 23-29 October 2005, Puerto Ric

    Regulated expression of ras gene constructs in Dictyostelium transformants.

    Full text link

    Shadowing of Ultrahigh Energy Neutrinos

    Get PDF
    The rise with energy of the neutrino--nucleon cross section implies that at energies above few TeV the Earth is becoming opaque to cosmic neutrinos. The neutrinos interact with the nucleons through the weak charged current, resulting into absorption, and the weak neutral current, which provides a redistribution of the neutrino energy. We Mellin transform the neutrino transport equation and find its exact solution in the moment space. A simple analytical formula is provided, which describes accurately the neutrino spectrum, after the neutrinos have traversed the Earth. The effect of the weak neutral current is most prominent for an initial flat neutrino spectrum and we find that at low energies (around 1 TeV) the neutrino intensity is even enhanced.Comment: gziped, tar file of LaTeX paper plus 2 postscript figures, 13 page

    Critical Casimir effect in classical binary liquid mixtures

    Full text link
    If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter fluctuations occur on all length scales and therefore close to the critical point this effect acquires a universal character, i.e., to a large extent it is independent of the microscopic details of the actual system. Accordingly it can be calculated theoretically by studying suitable representative model systems. We report on the direct measurement of critical Casimir forces by total internal reflection microscopy (TIRM), with femto-Newton resolution. The corresponding potentials are determined for individual colloidal particles floating above a substrate under the action of the critical thermal noise in the solvent medium, constituted by a binary liquid mixture of water and 2,6-lutidine near its lower consolute point. Depending on the relative adsorption preferences of the colloid and substrate surfaces with respect to the two components of the binary liquid mixture, we observe that, upon approaching the critical point of the solvent, attractive or repulsive forces emerge and supersede those prevailing away from it. Based on the knowledge of the critical Casimir forces acting in film geometries within the Ising universality class and with equal or opposing boundary conditions, we provide the corresponding theoretical predictions for the sphere-planar wall geometry of the experiment. The experimental data for the effective potential can be interpreted consistently in terms of these predictions and a remarkable quantitative agreement is observed.Comment: 30 pages, 17 figure
    corecore