36 research outputs found

    QTL mapping: a conceptual approach to improving cold tolerance at seedling stage in rice (Oryza sativa. L)

    Get PDF
    Much of what is known about the process of technological innovation in agriculture has yet to be captured in the discussions of abiotic stress plant tolerance as well as rice cold tolerance. The development of research and technological solutions to minimize risks of current abiotic stresses to the plant can lead to two possible outcomes: increase in agricultural productivity and assist the future of plant breeding work. Research efforts about the role of technological development, driven by abiotic stress constraints, are pivotal in making any assertion about the likely tolerance of plant to abiotic stress. Drawing upon the hypothesis of QTL mapping, this research investigates on detection of QTLs for cold tolerance at the seedling stage in rice (Oryza sativa. L), QTLs identified from a BC1F2 breeding population derived from the cross between Chomrongdhan, a donor parent tolerant with Vary botry a susceptible parent, that lead to increase rice productivity in Madagascar. Using a controlled environment and molecular work, out of total 500 BC1F2 segregating plants, 144 plants were used for genotyping based on of visual seedling stage cold tolerance symptom. A total of 4606 SNP markers evenly spread throughout the whole 12 rice genome was used for parental polymorphism survey. The 34% polymorphic markers were used for QTL mapping for cold tolerance at seedling stage. QTL analysis using inclusive composite interval mapping detected four QTLs on chromosome 2 and 10 with phenotypic variances (R2) of 11.11, 7.55, 12.8 and 8.8%, respectively. The position of QTL on chromosome 2 was flanked by 2262412 and 2237404, three other QTLs were detected on chromosome 10 conferred cold tolerances for seedling growth and leaf growth at 14day after recovery and appear to be a novel QTLs. Selected tolerant plant in this research should be useful for the farmers and the markers flanking those identified QTLs should be useful for molecular marker assisted breeding for cold tolerance for the breeder. Keywords: QTL mapping, cold tolerance, seedling, rice

    Identification of Bactrocera invadens (Diptera: Tephritidae) from Burundi, based on morphological characteristics and DNA barcode

    Get PDF
    Bactrocera (Bactrocera) invadens Drew (Diptera: Tephritidae) is a new species of fruit fly in 2005. It belongs to the Bactrocera dorsalis complex, but is difficult to diagnose based on solely morphological identification. It occurs in India, Bhutan and some countries of Africa. In this study, 14 adult samples of fruit flies were collected from Bujumbura and Cibitoke in Burundi District. Microscopic observations showed morphological character states that were congruent with the diagnosis of B. invadens. The mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) gene sequence alignment demonstrated the similarity between specimens 1 and 2 and B. invadens is 99.47%, between specimen 3 and B. invadens 98.77%, between specimen 4 and B. invadens 99.82%, and between the other 10 specimens and B. invadens 100%. Therefore, all samples were identified as B. invadens based on morphological characteristics and DNA barcode of COI gene. This study represented the first report of B. invadens in the Burundi District.Key words: Bactrocera (Bactrocera) invadens, identification, morphological characteristics, mtDNA COI gene, DNA barcode

    Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance

    Get PDF
    Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their mean levels of putrescine, but also in the physiological functions assumed by this molecule in stressed tissues. Salt stress increased the proportion of conjugated putrescine in salt-resistant Pokkali and decreased it in the salt-sensitive IKP, suggesting a possible protective function in response to NaCl. Activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and arginine decarboxylase (ADC; EC 4.1.1.19) involved in putrescine synthesis were higher in salt-resistant Pokkali than in salt-sensitive IKP. Both enzymes were involved in the response to salt stress. Salt stress also increased diamine oxidase (DAO; 1.4.3.6) and polyamine oxidase (PAO EC 1.5.3.11) activities in the roots of salt-resistant Pokkali and in the shoots of salt-sensitive IKP. Gene expression followed by reverse transcription-PCR suggested that putrescine could have a post-translational impact on genes coding for ADC (ADCa) and ODC (ODCa and ODCb) but could induce a transcriptional activation of genes coding for PAO (PAOb) mainly in the shoot of salt-stressed plants. The salt-resistant cultivar Pokkali produced higher amounts of ethylene than the salt-sensitive cultivar IKP, and exogenous putrescine increased ethylene synthesis in both cultivars, suggesting no direct antagonism between polyamine and ethylene pathways in rice

    Varying efficacy of artesunate+amodiaquine and artesunate+sulphadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in the Democratic Republic of Congo: a report of two in-vivo studies

    Get PDF
    BACKGROUND: Very few data on anti-malarial efficacy are available from the Democratic Republic of Congo (DRC). DRC changed its anti-malarial treatment policy to amodiaquine (AQ) and artesunate (AS) in 2005. METHODS: The results of two in vivo efficacy studies, which tested AQ and sulphadoxine-pyrimethamine (SP) monotherapies and AS+SP and AS+AQ combinations in Boende (Equatorial province), and AS+SP, AS+AQ and SP in Kabalo (Katanga province), between 2003 and 2004 are presented. The methodology followed the WHO 2003 protocol for assessing the efficacy of anti-malarials in areas of high transmission. RESULTS: Out of 394 included patients in Boende, the failure rates on day 28 after PCR-genotyping adjustment of AS+SP and AS+AQ were estimated as 24.6% [95% CI: 16.6-35.5] and 15.1% [95% CI: 8.6-25.7], respectively. For the monotherapies, failure rates were 35.9% [95% CI: 27.0-46.7] for SP and 18.3% [95% CI: 11.6-28.1] for AQ. Out of 207 patients enrolled in Kabalo, the failure rate on day 28 after PCR-genotyping adjustment was 0 [1-sided 95% CI: 5.8] for AS+SP and AS+AQ [1-sided 95% CI: 6.2]. It was 19.6% [95% CI: 11.4-32.7] for SP monotherapy. CONCLUSION: The finding of varying efficacy of the same combinations at two sites in one country highlights one difficulty of implementing a uniform national treatment policy in a large country. The poor efficacy of AS+AQ in Boende should alert the national programme to foci of resistance and emphasizes the need for systems for the prospective monitoring of treatment efficacy at sentinel sites in the country

    Assessing the impact of rice cultivation and off-season period on dynamics of soil enzyme activities and bacterial communities in two agro-ecological regions of Mozambique

    Get PDF
    Soil ecosystem perturbation due to agronomic practices can negatively impact soil productivity by altering the diversity and function of soil health determinants. Currently, the influence of rice cultivation and off-season periods on the dynamics of soil health determinants is unclear. Therefore, soil enzyme activities (EAs) and bacterial community compositions in rice-cultivated fields at postharvest (PH) and after a 5-month off-season period (5mR), and fallow-fields (5-years-fallow, 5YF; 10-years-fallow, 10YF and/or one-year-fallow, 1YF) were assessed in two agroecological regions of Mozambique. EAs were mostly higher in fallow fields than in PH, with significant (p < 0.05) differences detected for -glucosidase and acid phosphatase activities. Only -glucosidase activity was significantly (p < 0.05) different between PH and 5mR, suggesting that -glucosidase is responsive in the short-term. Bacterial diversity was highest in rice-cultivated soil and correlated with NO3 , NH4 + and electrical conductivity. Differentially abundant genera, such as Agromyces, Bacillus, Desulfuromonas, Gaiella, Lysobacter, Micromonospora, Norcadiodes, Rubrobacter, Solirubrobacter and Sphingomonas were mostly associated with fallow and 5mR fields, suggesting either negative effects of rice cultivation or the fallow period aided their recovery. Overall, rice cultivation and chemical parameters influenced certain EAs and shaped bacterial communities. Furthermore, the 5-month off-season period facilitates nutrient recovery and proliferation of plant-growth-promoting bacteriainfo:eu-repo/semantics/publishedVersio

    Geo-additive modelling of malaria in Burundi

    Get PDF
    Abstract Background Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. Methods The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007). Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated) and unstructured (uncorrelated) components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. Results The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified, without being able to explain them. Conclusions In this paper, semiparametric models are used to model the effects of both climatic covariates and spatial effects on malaria distribution in Burundi. The results obtained from the proposed models suggest a strong positive association between malaria incidence in a given month and the minimum temperature of the previous month. From the spatial effects, important spatial patterns of malaria that are related to factors other than climatic variables are identified. Potential explanations (factors) could be related to socio-economic conditions, food shortage, limited access to health care service, precarious housing, promiscuity, poor hygienic conditions, limited access to drinking water, land use (rice paddies for example), displacement of the population (due to armed conflicts).</p

    Bayesian modelling of the effect of climate on malaria in Burundi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Burundi, malaria is a major public health issue in terms of both morbidity and mortality with around 2.5 million clinical cases and more than 15,000 deaths each year. It is the single main cause of mortality in pregnant women and children below five years of age. Due to the severe health and economic cost of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies have been done on the subject yielding different results as which factors are most responsible for the increase in malaria. The purpose of this study has been to undertake a spatial/longitudinal statistical analysis to identify important climatic variables that influence malaria incidences in Burundi.</p> <p>Methods</p> <p>This paper investigates the effects of climate on malaria in Burundi. For the period 1996-2007, real monthly data on both malaria epidemiology and climate in the area of Burundi are described and analysed. From this analysis, a mathematical model is derived and proposed to assess which variables significantly influence malaria incidences in Burundi. The proposed modelling is based on both generalized linear models (GLM) and generalized additive mixed models (GAMM). The modelling is fully Bayesian and inference is carried out by Markov Chain Monte Carlo (MCMC) techniques.</p> <p>Results</p> <p>The results obtained from the proposed models are discussed and it is found that malaria incidence in a given month in Burundi is strongly positively associated with the minimum temperature of the previous month. In contrast, it is found that rainfall and maximum temperature in a given month have a possible negative effect on malaria incidence of the same month.</p> <p>Conclusions</p> <p>This study has exploited available real monthly data on malaria and climate over 12 years in Burundi to derive and propose a regression modelling to assess climatic factors that are associated with monthly malaria incidence. The results obtained from the proposed models suggest a strong positive association between malaria incidence in a given month and the minimum temperature (night temperature) of the previous month. An open question is, therefore, how to cope with high temperatures at night.</p

    Vector control in a malaria epidemic occurring within a complex emergency situation in Burundi: a case study

    Get PDF
    BACKGROUND: African highlands often suffer of devastating malaria epidemics, sometimes in conjunction with complex emergencies, making their control even more difficult. In 2000, Burundian highlands experienced a large malaria outbreak at a time of civil unrest, constant insecurity and nutritional emergency. Because of suspected high resistance to the first and second line treatments, the provincial health authority and Médecins Sans Frontières (Belgium) decided to implement vector control activities in an attempt to curtail the epidemic. There are few reported interventions of this type to control malaria epidemics in complex emergency contexts. Here, decisions and actions taken to control this epidemic, their impact and the lessons learned from this experience are reported. CASE DESCRIPTION: Twenty nine hills (administrative areas) were selected in collaboration with the provincial health authorities for the vector control interventions combining indoor residual spraying with deltamethrin and insecticide-treated nets. Impact was evaluated by entomological and parasitological surveys. Almost all houses (99%) were sprayed and nets use varied between 48% and 63%. Anopheles indoor resting density was significantly lower in treated as compared to untreated hills, the latter taken as controls. Despite this impact on the vector, malaria prevalence was not significantly lower in treated hills except for people sleeping under a net. DISCUSSION: Indoor spraying was feasible and resulted in high coverage despite being a logistically complex intervention in the Burundian context (scattered houses and emergency situation). However, it had little impact on the prevalence of malaria infection, possibly because it was implemented after the epidemic's peak. Nevertheless, after this outbreak the Ministry of Health improved the surveillance system, changed its policy with introduction of effective drugs and implementation of vector control to prevent new malaria epidemics. CONCLUSION: In the absence of effective drugs and sufficient preparedness, present study failed to demonstrate any impact of vector control activities upon the course of a short-duration malaria epidemic. However, the experience gained lead to increased preparedness and demonstrated the feasibility of vector control measures in this specific context

    Safety profile of Coartem®: the evidence base

    Get PDF
    This article reviews the comprehensive data on the safety and tolerability from over 6,300 patients who have taken artemether/lumefantrine (Coartem®) as part of Novartis-sponsored or independently-sponsored clinical trials. The majority of the reported adverse events seen in these studies are mild or moderate in severity and tend to affect the gastrointestinal or nervous systems. These adverse events, which are common in both adults and children, are also typical of symptoms of malaria or concomitant infections present in these patients. The wealth of safety data on artemether/lumefantrine has not identified any neurological, cardiac or haematological safety concerns. In addition, repeated administration is not associated with an increased risk of adverse drug reactions including neurological adverse events. This finding is especially relevant for children from regions with high malaria transmission rates who often receive many courses of anti-malarial medications during their lifetime. Data are also available to show that there were no clinically relevant differences in pregnancy outcomes in women exposed to artemether/lumefantrine compared with sulphadoxine-pyrimethamine during pregnancy. The six-dose regimen of artemether/lumefantrine is therefore well tolerated in a wide range of patient populations. In addition, post-marketing experience, based on the delivery of 250 million treatments as of July 2009, has not identified any new safety concerns for artemether/lumefantrine apart from hypersensitivity and allergies, known class effects of artemisinin derivatives
    corecore