34 research outputs found

    Leptin fails to blunt the lipopolysaccharide-induced activation of the hypothalamic-pituitary-adrenal axis in rats

    Get PDF
    Copyright @ 2013 The authors. This work is licensed under a Creative Commons Attribution 3.0 Unported License.Obesity is a risk factor for sepsis morbidity and mortality, whereas the hypothalamic-pituitary-adrenal (HPA) axis plays a protective role in the body's defence against sepsis. Sepsis induces a profound systemic immune response and cytokines serve as excellent markers for sepsis as they act as mediators of the immune response. Evidence suggests that the adipokine leptin may play a pathogenic role in sepsis. Mouse endotoxaemic models present with elevated leptin levels and exogenously added leptin increased mortality whereas human septic patients have elevated circulating levels of the soluble leptin receptor (Ob-Re). Evidence suggests that leptin can inhibit the regulation of the HPA axis. Thus, leptin may suppress the HPA axis, impairing its protective role in sepsis.We hypothesised that leptin would attenuate the HPA axis response to sepsis.We investigated the direct effects of an i.p. injection of 2 mg/kg leptin on the HPA axis response to intraperitoneally injected 25 μg/kg lipopolysaccharide (LPS) in the male Wistar rat. We found that LPS potently activated the HPA axis, as shown by significantly increased plasma stress hormones, ACTH and corticosterone, and increased plasma interleukin 1β (IL1β) levels, 2 h after administration. Pre-treatment with leptin, 2 h before LPS administration, did not influence the HPA axis response to LPS. In turn, LPS did not affect plasma leptin levels. Our findings suggest that leptin does not influence HPA function or IL1b secretion in a rat model of LPS-induced sepsis, and thus that leptin is unlikely to be involved in the acute-phase endocrine response to bacterial infection in rats.The section is funded by grants from the MRC, BBSRC, NIHR and an Integrative Mammalian Biology (IMB) Capacity Building Award, and by a FP7-HEALTH-2009-241592 EuroCHIP grant and is supported by the NIHR Imperial Biomedical Research Centre Funding Scheme. This work is supported by a BBSRC Doctoral Training-Strategic Skills Award grant (BB/F017340/1)

    Effects of sex, menstrual cycle phase, and endogenous hormones on cognition in schizophrenia

    Get PDF
    In women with schizophrenia, cognition has been shown to be enhanced following administration of hormone therapy or oxytocin. We examined how natural hormonal changes across the menstrual cycle influence cognition in women with schizophrenia. We hypothesized that female patients would perform better on “female-dominant” tasks (verbal memory/fluency) and worse on “male-dominant” tasks (visuospatial) during the early follicular phase (low estradiol and progesterone) compared to midluteal phase (high estradiol and progesterone) in relation to estradiol but not progesterone

    Reduced Levels of Vasopressin and Reduced Behavioral Modulation of Oxytocin in Psychotic Disorders

    Get PDF
    Oxytocin (OT) and arginine vasopressin (AVP) exert robust influence on social affiliation and specific cognitive processes in healthy individuals. Abnormalities in these neuroendocrine systems have been observed in psychotic disorders, but their relation to impairments in behavioral domains that these endocrines modulate is not well understood. We compared abnormalities of OT and AVP serum concentrations in probands with schizophrenia (n = 57), schizoaffective disorder (n = 34), and psychotic bipolar disorder (n = 75); their first-degree relatives without a history of psychosis (n = 61, 43, 91, respectively); and healthy controls (n = 66) and examined their association with emotion processing and cognition. AVP levels were lower in schizophrenia (P = .002) and bipolar probands (P = .03) and in relatives of schizophrenia probands (P = .002) compared with controls. OT levels did not differ between groups. Familiality estimates were robust for OT (h 2 = 0.79, P = 3.97e−15) and AVP (h 2 = 0.78, P = 3.93e−11). Higher levels of OT were associated with better emotion recognition (β = 0.40, P < .001) and general neuropsychological function (β = 0.26, P = .04) in healthy controls as expected but not in any proband or relative group. In schizophrenia, higher OT levels were related to greater positive symptom severity. The dissociation of OT levels and behavioral function in all proband and relative groups suggests that risk and illness factors associated with psychotic disorders are not related to reduced OT levels but to a disruption in the ability of physiological levels of OT to modulate social cognition and neuropsychological function. Decreased AVP levels may be a marker of biological vulnerability in schizophrenia because alterations were seen in probands and relatives, and familiality was high

    Differentiation dependent expression of urocortin’s mRNA and peptide in human osteoprogenitor cells: influence of BMP-2, TGF-beta-1 and dexamethasone

    Get PDF
    Urocortin-1 (UCN) a corticotropin releasing-factor (CRF) related peptide, has been found to be expressed in many different tissues like the central nervous system, the cardiovascular system, adipose tissue, and skeletal muscle. The effects of UCN are mediated via stimulation of CRF-receptors 1 and 2 (CRFR1 and 2, CRFR’s) with a high affinity for CRFR2. It has been shown that the CRF-related peptides and CRFR’s are involved in the regulation of stress-related endocrine, autonomic and behavioural responses. Using immunocytochemistry, immunohistochemistry and RT–PCR, we now can show the differentiation dependent expression of UCN mRNA and peptide in human mesenchymal progenitor cells (MSCs) directed to the osteoblastic phenotype for the first time. UCN expression was down regulated by TGF-beta and BMP-2 in the early proliferation phase of osteoblast development, whereas dexamethasone (dex) minimally induced UCN gene expression during matrix maturation after 24 h stimulation. Stimulation of MSCs for 28 days with ascorbate/beta-glycerophosphate (asc/bGp) induced UCN gene expression at day 14. This effect was prevented when using 1,25-vitamin D3 or dex in addition. There was no obvious correlation to osteocalcin (OCN) gene expression in these experiments. In MSCs from patients with metabolic bone disease (n = 9) UCN gene expression was significantly higher compared to MSCs from normal controls (n = 6). Human MSCs did not express any of the CRFR’s during differentiation to osteoblasts. Our results indicate that UCN is produced during the development of MSCs to osteoblasts and differentially regulated during culture as well as by differentiation factors. The expression is maximal between proliferation and matrix maturation phase. However, UCN does not seem to act on the osteoblast itself as shown by the missing CRFR’s. Our results suggest new perspectives on the role of urocortin in human skeletal tissue in health and disease

    Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social Behavior

    Get PDF
    The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS), a condition caused by deletion of ∼28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT) and arginine vasopressin (AVP) regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music), and a negative physical stressor (cold). We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior

    Improving Voltage Profile and Optimal Scheduling of Vehicle to Grid Energy based on a New Method

    No full text
    The electric vehicles (EVs), depending on the charging or discharging modes, can act as flexible loads or as flexible energy sources. Therefore, this paper proposes a method for achieving the following objectives: improvement the voltage profile of the point of common coupling (PCC), control the charging and discharging of EVs in an appropriate scheduling so that at the end of the charging and discharging process all EVs are fully charged, improvement the profiles of active and reactive loads based on the peak shaving and the valley filling, charging rate control and energy management for the economic justification of vehicle to grid (V2G) technology based on the proposed method. Considering that the penetration of EVs and state of charge (SOC) of battery at any time is random, this paper extracts and analyzes the data that is available through national household travel surveys (NHTS). In order to determine the desired parameters, two stochastic algorithms are integrated with Monte Carlo simulations. To prove the performance superiority of the proposed method over conventional methods under high EVs-penetration, an IEEE 14-bus system is used for real-time simulation

    Associations between alcohol use and peripheral, genetic, and epigenetic markers of oxytocin in a general sample of young and older adults.

    No full text
    IntroductionHuman and nonhuman animal research suggests that greater oxytocin (OT) activity is protective against harmful substance use. Most research on this topic is preclinical, with few studies evaluating the association between substance use and individual differences in the human OT system. The present study sought to fill this gap by evaluating the relationship between alcohol use and multiple biological measures of OT activity in an overall low to moderate-drinking sample.MethodAs part of a larger study, generally healthy young (n&nbsp;=&nbsp;51) and older (n&nbsp;=&nbsp;53) adults self-reported whether they regularly used alcohol and how much alcohol they consumed per week. Participants also provided blood samples from which peripheral OT, and in an age-heterogeneous subset of participants (n&nbsp;=&nbsp;56) variation in the oxytocin receptor gene (the OXTR rs53576 polymorphism) and OXTR DNA methylation levels (at cytosine-guanine dinucleotide sites -860, -924, -934), were obtained.ResultsA-allele carriers of the OXTR rs53579 polymorphism were less likely to regularly consume alcohol. Among regular alcohol consumers, number of alcoholic drinks per week was positively associated with peripheral OT in regression models excluding observations of high influence (postdiagnostic models). Number of alcoholic drinks per week was consistently negatively associated with OXTR DNA methylation at site -860; and with OXTR DNA methylation at site -924 in postdiagnostic models.ConclusionsThe significant associations between alcohol use and individual differences in OT activity support the involvement of the OT system in alcohol use, which most likely reflect the role of OT when alcohol use is under control of its rewarding properties and/or the acute impacts of alcohol on the OT system. Additional research with markers of OT activity and alcohol use, particularly longitudinal, is needed to clarify the bidirectional effects of OT and alcohol use in moderate to harmful drinking and dependence
    corecore