61 research outputs found

    Global existence and uniform stability of solutions for a quasilinear viscoelastic problem

    Get PDF
    Abstract In this paper the nonlinear viscoelastic wave equation in canonical form |ut|ρutt − ∆u − ∆utt + � t 0 g(t − τ)∆u(τ )dτ = b|u|p−2u with Dirichlet boundary condition is considered. By introducing a new functional and using the potential well method, we show that the damping induced by the viscoelastic term is enough to ensure global existence and uniformly decay of solutions provided that the initial data are in some stable set. Keywords and phrases: Global existence, Exponential decay, Nonlinear source, Relaxation function, Polynomial decay, Viscoelasticity

    Global existence and uniform stability of solutions for a quasilinear viscoelastic problem

    Get PDF
    Abstract In this paper the nonlinear viscoelastic wave equation in canonical form |ut|ρutt − ∆u − ∆utt + � t 0 g(t − τ)∆u(τ )dτ = b|u|p−2u with Dirichlet boundary condition is considered. By introducing a new functional and using the potential well method, we show that the damping induced by the viscoelastic term is enough to ensure global existence and uniformly decay of solutions provided that the initial data are in some stable set. Keywords and phrases: Global existence, Exponential decay, Nonlinear source, Relaxation function, Polynomial decay, Viscoelasticity

    Critical Role of Methylglyoxal and AGE in Mycobacteria-Induced Macrophage Apoptosis and Activation

    Get PDF
    Apoptosis and activation of macrophages play an important role in the host response to mycobacterial infection involving TNF-α as a critical autocrine mediator. The underlying mechanisms are still ill-defined. Here, we demonstrate elevated levels of methylglyoxal (MG), a small and reactive molecule that is usually a physiological product of various metabolic pathways, and advanced glycation end products (AGE) during mycobacterial infection of macrophages, leading to apoptosis and activation of macrophages. Moreover, we demonstrate abundant AGE in pulmonary lesions of tuberculosis (TB) patients. Global gene expression profiling of MG-treated macrophages revealed a diverse spectrum of functions induced by MG, including apoptosis and immune response. Our results not only provide first evidence for the involvement of MG and AGE in TB, but also form a basis for novel intervention strategies against infectious diseases in which MG and AGE play critical roles

    Trypanosoma cruzi CYP51 Inhibitor Derived from a Mycobacterium tuberculosis Screen Hit

    Get PDF
    Enzyme sterol 14α-demethylase (CYP51) is a well-established target for anti-fungal therapy and is a prospective target for Chagas' disease therapy. We previously identified a chemical scaffold capable of delivering a variety of chemical structures into the CYP51 active site. In this work the binding modes of several second generation compounds carrying this scaffold were determined in high-resolution co-crystal structures with CYP51 of Mycobacterium tuberculosis. Subsequent assays against CYP51 in Trypanosoma cruzi, the agent of Chagas' disease, demonstrated that two of the compounds bound tightly to the enzyme. Both were tested for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei. One of the compounds had potent, selective anti–T. cruzi activity in infected mouse macrophages. This compound is currently being evaluated in animal models of Chagas' disease. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability of a single amino acid residue at a critical position in the active site. Our work is aimed at rational design of potent and highly selective CYP51 inhibitors with potential to become therapeutic drugs. Drug selectivity to prevent host–pathogen cross-reactivity is pharmacologically important, because CYP51 is present in human host

    Structural Characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei Bound to the Antifungal Drugs Posaconazole and Fluconazole

    Get PDF
    Chagas Disease is caused by kinetoplastid protozoa Trypanosoma cruzi, whose sterols resemble those of fungi, in both composition and biosynthetic pathway. Azole inhibitors of sterol 14α-demethylase (CYP51), such as fluconazole, itraconazole, voriconazole, and posaconazole, successfully treat fungal infections in humans. Efforts have been made to translate anti-fungal azoles into a second-use application for Chagas Disease. Ravuconazole and posaconazole have been recently proposed as candidates for clinical trials with Chagas Disease patients. However, the widespread use of posaconazole for long-term treatment of chronic infections may be limited by hepatic and renal toxicity, a requirement for simultaneous intake of a fatty meal or nutritional supplement to enhance absorption, and cost. To aid our search for structurally and synthetically simple CYP51 inhibitors, we have determined the crystal structures of the CYP51 targets in T. cruzi and T. brucei, both bound to the anti-fungal drugs fluconazole or posaconazole. The structures provide a basis for a design of new drugs targeting Chagas Disease, and also make it possible to model the active site characteristics of the highly homologous Leishmania CYP51. This work provides a foundation for rational synthesis of new therapeutic agents targeting the three kinetoplastid parasites

    Microbes Infect.

    No full text
    corecore