
Global existence and uniform stability of solutions

for a quasilinear viscoelastic problem

Salim A. Messaoudi & Nasser-eddine Tatar

King Fahd University of Petroleum and Minerals

Department of Mathematical Sciences

Dhahran 31261, Saudi Arabia.

E-mail : messaoud@kfupm.edu.sa

E-mail : tatarn@kfupm.edu.sa

Abstract

In this paper the nonlinear viscoelastic wave equation in canonical form

|ut|
ρutt −∆u−∆utt +

∫ t

0
g(t− τ)∆u(τ)dτ = b|u|p−2u

with Dirichlet boundary condition is considered. By introducing a new func-

tional and using the potential well method, we show that the damping induced

by the viscoelastic term is enough to ensure global existence and uniformly

decay of solutions provided that the initial data are in some stable set.
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1 Introduction

In elasticity the existing theory accounts for materials which have a capacity to
store mechanical energy with no dissipation (of the energy). On the other hand, a
Newtonian viscous fluid in a non-hydrostatic stress state has a capacity for dissipation
energy without storing it. Materials which are outside the scope of these two theories
would be those for which some, but not all, of the work done to deform them, can be
recovered. Such materials possess a capacity of storage and dissipation of mechanical
energy. This is the case of ”viscoelastic” materials.

Polymers, for instance, are viscoelastic materials since they exhibit intermediate
position between viscous liquids and elastic solids.

The formulation of Boltzmann’s superposition principle leads to a memory term
involving a relaxation function of exponential type. But, it has been observed that
relaxation functions of some viscoelastic materials are not necessarily of this type.
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In this work, we are concerned with the following initial boundary value problem


|ut|
ρutt −∆u−∆utt +

t∫
0
g(t− τ)∆u(τ)dτ − γ∆ut = b|u|p−2u, in Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)
where Ω is a bounded domain of IRn (n ≥ 1) with a smooth boundary ∂Ω, γ ≥ 0,
ρ, b > 0, p > 2 are constants, ρ ≥ 0, p ≥ 2 are constants, and g : IR+ → IR+ is a
positive and uniformly decaying function. This type of equations usually appears as
a model in nonlinear viscoelasticity (see [1]).

In the case ρ > 0 and in the absence of the source term (b = 0), this problem has
been studied by Cavalcanti et al. in [1]. By assuming 0 < ρ ≤ 2/(n− 2) if n ≥ 3 or
ρ > 0 if n = 1, 2, they proved a global existence result for γ ≥ 0 and an exponential
decay result for γ > 0. This decay result was later pushed to a situation where a
source term is present (b > 0) by Messaoudi and Tatar [2] .

In the case ρ = 0 and in the absence of the dispersion term, problem (1.1) has
been extensively studied and several results concerning existence, decay and blow up
have been established. In this regard, we mention the work of Cavalcanti et al. [3]
where the following equation

utt −∆u+

t∫
0

g(t− τ)∆u(τ)dτ + a(x)ut + |u|γu = 0, in Ω× (0,∞)

has been considered. Here a : Ω → IR+, is a function which may vanish outside
a subset ω ⊂ Ω of positive measure. Under some geometric restrictions on ω and
assuming that

a(x) ≥ a0 > 0, ∀x ∈ ω,

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,

for some positive constants ξ1 and ξ2, the authors established an exponential decay
result. Berrimi and Messaoudi [4] improved Cavalcanti’s result by introducing a
different functional. This new functional allowed them to weaken the conditions on
both a and g. In particular, the function a can vanish on the whole domain Ω and
consequently the geometry condition is no longer needed. In [5], Cavalcanti et al.
considered

utt − k0∆u+

t∫
0

div[a(x)g(t− τ)∇u(τ)]dτ + b(x)h(ut) + f(u) = 0.

Under similar conditions, as in above, on the relaxation function g and

a(x) + b(x) ≥ ρ > 0, ∀x ∈ Ω,

they established an exponential stability for g decaying exponentially and h linear and
polynomial stability for g decaying polynomially and h nonlinear. Their proof, based
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on the use of piecewise multipliers, is similar to the one in [3]. Although the results in
[4] and [5] improve the earlier one in [3], the approaches and the functionals used are
both different. Another problem, where the dissipation induced by the integral term
is cooperating with a damping acting on a part of the boundary was also discussed
by Cavalcanti et al. [6]. A related result is the work of Kawashima [7], in which
he considered a one-dimensional model equation for viscoelastic materials of integral
type where the memory function is allowed to have an integrable singularity. For small
initial data, Muñoz Rivera and Baretto [8] proved that the first and the second-order
energies of the solution to a viscoelastic plate, decay exponentially provided that the
kernel of the memory decays exponentially. Kirane and Tatar [9] considered a mildly
damped wave equation and proved that any small internal dissipation is sufficient to
uniformly stabilize the solution by means of a nonlinear feedback of memory type
acting on a part of the boundary. This result was established without any restriction
on the space dimension or geometrical conditions on the domain or its boundary.
Furthermore, Berrimi and Messaoudi [10] considered

utt −∆u+
∫ t

0
g(t− τ)∆u(τ)dτ = |u|p−2 u

in a bounded domain and p > 2. They established a local existence result and showed,
under weaker conditions than those in [3] and [5], that the local solution is global
and decays uniformly if the initial data are small enough.

Concerning nonexistence, Messaoudi [11] studied

utt −∆u+
∫ t

0
g(t− τ)∆u(τ)dτ + a |ut|

α−2 ut = b |u|p−2 u

and proved a blow up result for solutions with negative initial energy if p > α and a
global result for p ≤ α. This result has been later improved by Messaoudi [12] to ac-
commodate certain solutions with positive initial energy. By the end it is also worth
mentioning the work of Aassila et al. [13] in which an asymptotic stability and decay
rates, for solutions of the wave equation in star-shaped domains, were established by
combination of memory effect and damping mechanism.

In this paper, we take γ = 0 in (1.1). More precisely, we consider




|ut|
ρutt −∆u−∆utt +

t∫
0
g(t− τ)∆u(τ)dτ = b|u|p−2u, in Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1.2)

In this case the source term competes with the dissipation induced by the viscoelastic
term only. As we are in a less favorable situation, it is interesting to study this
interaction. We will show that there exists an appropriate set S, called stable, such
that if the initial data are in S, the solution continues to live there forever.. Moreover,
we will show that the solution goes to zero with an exponential or polynomial rate
depending on the decay rate of the relaxation function. To achieve our goal, we
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combine the potential well method and the perturbation method and use a “new”
functional which made our proof easy and allowed us to obtain our result with less
requirements on g (see Remark 3.1 below).

The paper is organized as follows. In Section 2, we present some notations and
material needed for our work and we state, without a proof, a standard local existence
theorem. Section 3 contains the statements and the proofs of the global existence
and exponential decay results.

2 Preliminaries

In this section, we present some material needed in the proofs of our results. Namely,
we introduce some notations and show the invariance of an appropriately chosen set
of initial data.

We use the standard Lebesgue space Lp(Ω) and Sobolev space H1
0 (Ω) with their

usual scalar products and norms. The symbols ∇ and ∆ will stand for the gradient
and the Laplacian, respectively. The prime

′

and the subscript t will denote time
differentiation. We will also be using the following Sobolev-Poincaré embedding

H1
0 (Ω) ↪→ Lq(Ω) (2.1)

so
‖v‖q ≤ C∗q ‖∇v‖2 , (2.2)

for 2 ≤ q < 2n/(n− 2) if n ≥ 3 and q ≥ 2 if n = 1, 2.
For the relaxation function g we assume
(G1) g : IR+ → IR+ is a C1 function satisfying

1−

∞∫
0

g(s)ds = l > 0.

(G2) There exists a positive constant ξ such that

g′(t) ≤ −ξgr(t), 1 ≤ r < 3/2, t ≥ 0.

Proposition 2.1. Let u0, u1 ∈ H1
0 (Ω) be given. Assume that g satisfies (G1).

Assume further that

2 ≤ p ≤
2(n− 1)

n− 2
, n ≥ 3 (2.3)

p ≥ 2, n = 1, 2.

Then problem (1.2) has a unique local solution

u, ut ∈ C
(
[0, Tm) ;H

1
0 (Ω)

)
, (2.4)

for some Tm > 0.
Remark 2.1. This theorem can be easily established by combining the arguments
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of [1] and [10].
Remark 2.2. Condition (2.3) is needed to establish the local existence result (see
[10]). In fact under this condition, the nonlinearity is locally Lipschitz from H1(Ω)
to L2(Ω).
Remark 2.3. Condition (G1) is necessary to guarantee the hyperbolicity of the
system (1.2).

Remark 2.4. Condition r < 3/2 is imposed so that
∞∫
0
g2−r(s)ds < ∞.

Next, we introduce

I(t) = I(u, ut) :=


1−

t∫
0

g(s)ds


 ||∇u||22 + ||∇ut||

2
2 − b||u||pp,

J(t) = J(u, ut) :=
1

2


1−

t∫
0

g(s)ds


 ||∇u(t)||22 +

1

2
||∇ut||

2
2 +

1

2
(g ◦ ∇u)(t)−

b

p
||u||pp,

E(t) = E(u, ut) := J(t) +
1

ρ+ 2

∫
Ω

|ut(t)|
ρ+2dx, (2.5)

where

(gs ◦ v)(t) =

t∫
0

gs(t− τ)||v(t)− v(τ)||22dτ, s ≥ 1. (2.6)

Lemma 2.2. Suppose that v ∈ L∞(0, T ;H1(Ω)), g is a continuous function such
that

∞∫
0

g1−θ(s)ds < ∞ , 0 ≤ θ < 1.

Then we have

(g ◦ v)(t) ≤ 2




 t∫

0

g1−θ(s)ds


 ||∇v(t)||2L∞(0,T ;L2(Ω))




r−1
r−1+θ

((gr ◦ v)(t))
θ

r−1+θ . (2.7)

and

(g ◦ v)(t) ≤ 2




t∫
0

||∇v(s)||22ds+ t||∇v(t)||22




(r−1)/r

((gr ◦ v)(t))1/r . (2.8)

Proof. To prove (2.7), it suffices to note that, for q > 1, 0 ≤ θ ≤ 1,

(g ◦ v)(t) =

t∫
0

g
1−θ
q (t− s)||∇v(t)−∇v(s)||

2
q

2 g
q−1+θ

q (t− s)||∇v(t)−∇v(s)||
2(q−1)

q

2 ds.

By applying Holder’s inequality, we get

(g ◦ v)(t) ≤


 t∫

0

g
1−θ
q (t− s)||∇v(t)−∇v(s)||22ds




1/q

×
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
 t∫

0

g
q−1+θ

q−1 (t− s)||∇v(t)−∇v(s)||22ds




(q−1)/q

By taking q = (r − 1 + θ)/r − 1, we obtain

(g ◦ v)(t) ≤


 t∫

0

g1−θ(t− s)||∇v(t)−∇v(s)||22ds




(r−1)/(r−1+θ)

× (2.9)


 t∫

0

gr(t− s)||∇v(t)−∇v(s)||22ds




θ/(r−1+θ)

.

Estimate (2.7) follows easily for 0 ≤ θ < 1.
Finally, by taking θ = 1 in (2.9), estimate (2.8) is established.

Lemma 2.3. If u is the solution of (1.2) then the ”modified” energy satisfies

E ′(t) =
1

2
(g′ ◦ ∇u)(t)−

1

2
g(t)||∇u(t)||2 ≤ 0, (2.10)

for almost every t in [0, T ), where (g′ ◦ ∇u)(t) is defined similarly to (2.6).
Proof. By multiplying the equation in (1.2) by ut and integrating over Ω, using
integration by parts and hypothesis (G2), the assertion of the lemma is established.
Remark 2.5. This means that the energy is uniformly bounded (by E(0)) and is
decreasing in t.
Lemma 2.4. Suppose that (G1), (G2) and the hypotheses on p and ρ hold. Assume
further that u0, u1 ∈ H1

0 (Ω) and satisfy

β =
b

l
Cp

∗

(
2p

(p− 2) l
E(u0, u1)

)(p−2)/2

< 1 (2.11)

I(u0, u1) > 0, (2.12)

where C∗ is the best constant in (2.2) with q = p, then I(u(t), ut(t)) > 0, for each
t ∈ [0, Tm).
Proof. Since I(u0, u1) > 0 then, by continuity, there exists T∗ ≤ Tm such that
I(u, ut) ≥ 0 for all t ∈ [0, T∗). This implies that, for all t ∈ [0, T∗),

J(t) = 1
2

(
1−

t∫
0
g(s)ds

)
||∇u(t)||22 +

1
2
||∇ut||

2
2 +

1
2
(g ◦ ∇u)(t)− b

p
||u(t)||pp

≥ p−2
2p

[(
1−

t∫
0
g(s)ds

)
||∇u(t)||22 + ||∇ut||

2
2 + (g ◦ ∇u)(t)

]
+ 1

p
I(u, ut)

≥ p−2
2p

[(
1−

t∫
0
g(s)ds

)
||∇u(t)||22 + ||∇ut||

2
2 + (g ◦ ∇u)(t)

]
.

(2.13)

Hence, from (G1), (2.13) and Lemma 2.3, we find

l||∇u(t)||22 ≤

(
1−

t∫
0
g(s)ds

)
||∇u(t)||22 ≤

2p
p−2

J(t)

≤ 2p
p−2

E(t) ≤ 2p
p−2

E(u0, u1), ∀t ∈ [0, T∗).
(2.14)
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By exploiting the embedding relation (2.2), (G1) and the assumption (2.11), we easily
arrive at

b||u(t)||pp ≤ bCp
∗ ||∇u(t)||p2 ≤

bCp
∗

l
||∇u(t)||p−2

2 l||∇u(t)||22

≤ βl||∇u(t)||22 ≤ β

(
1−

t∫
0
g(s)ds

)
||∇u(t)||22

<

(
1−

t∫
0
g(s)ds

)
||∇u(t)||22, ∀t ∈ [0, T∗).

(2.15)

Therefore,

I(t) =


1−

t∫
0

g(s)ds


 ||∇u||22 − b||u(t)||pp + ||∇ut||

2
2 > 0,∀t ∈ [0, T∗).

By repeating this procedure and using the fact that

lim
t→T∗

b

l
Cp

∗

(
2p

(p− 2) l
E(u, ut)

)(p−2)/2

≤ β < 1,

T∗ is extended to Tm.

3 Exponential decay

In this section we state and prove our global existence and decay of solutions results.
Theorem 3.1 Suppose that (G1), (G2) and the hypotheses on p and ρ hold. If
u0, u1 ∈ H1

0 (Ω) and satisfy (2.11), (2.12), then the solution of (1.2) is bounded and
global in time.
Proof. It suffices to show that ||∇u(t)||22 + ||∇ut||

2
2 is bounded independently of t.

To achieve this note that, from (2.5), (2.10), and (2.13), we have, for t ∈ [0, T )

E(u0, u1) ≥ E(t) ≥ p−2
2p

[l||∇u(t)||22 + ||∇ut(t)||
2
2 + (g ◦ ∇u)(t)] + 1

p
I(u, ut)

≥ p−2
2p

[l||∇u(t)||22 + ||∇ut(t)||
2
2]

(3.1)

since I(u, ut) and (g ◦ ∇u)(t) are positive. Therefore,

||∇u(t)||22 + ||∇ut(t)||
2
2 ≤ CE(u0, u1),

where C is positive, depends only on p and l and is independent of t.
Remark 3.1. Observe that in the previous lemmas and Theorem 3.1 we did not
use hypothesis (G2). Only the non positivity of g

′

was needed. This will not be the
case in the theorem below. Indeed, we will need g to decrease in an exponential or
polynomial rate.
Theorem 3.2. Suppose that (G1), (G2) and the hypotheses on p and ρ hold. Assume
further that p > 2. If u0, u1 ∈ H1

0 (Ω) and satisfy (2.11) , (2.12). Then for each t0 > 0
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there exit positive constants k and K such that the solution of (1.2) satisfies, for all
t ≥ t0,

E(t) ≤ Ke−kt, r = 1 (3.2)

E(t) ≤ K(1 + t)−1/(r−1), r > 1. (3.3)

Proof. The proof relies on a suitable modification of the energy. We use the func-
tional

Ψ(t) :=
1

ρ+ 1

∫
Ω

|ut|
ρ utudx+

∫
Ω

∇u.∇utdx.

A differentiation of Ψ(t) with respect to t along the solution of (1.2) yields

Ψ
′

(t) = −
∫
Ω
|∇u|2 dx+

∫
Ω
∇u(t).

t∫
0
g(t− s)∇u(s)dsdx

+
∫
Ω
|∇ut|

2 dx+ 1
ρ+1

∫
Ω
|ut|

ρ+2 dx+ b
∫
Ω
|u|pdx.

(3.4)

We now estimate the second term in the right side of (3.4) as follows

∫
Ω

∇u(t).

t∫
0

g(t− τ)∇u(τ)dτdx ≤
1

2

∫
Ω

|∇u(t)|2dx+
1

2

∫
Ω


 t∫

0

g(t− τ)|∇u(τ)|dτ




2

dx

≤
1

2

∫
Ω

|∇u(t)|2dx+
1

2

∫
Ω


 t∫

0

g(t− τ)(|∇u(τ)−∇u(t)|+ |∇u(t)|)dτ




2

dx.

We then use Young’s inequality to obtain, for any η > 0,

∫
Ω

(
t∫
0
g(t− τ)(|∇u(τ)−∇u(t)|+ |∇u(t)|)dτ

)2

dx

≤
∫
Ω

(
t∫
0
g(t− τ)(|∇u(τ)−∇u(t)|dτ

)2

dx+
∫
Ω

(
t∫
0
g(t− τ)|∇u(t)|dτ

)2

dx

+2
∫
Ω

(
t∫
0
g(t− τ)(|∇u(τ)−∇u(t)|dτ

)(
t∫
0
g(t− τ)|∇u(t)|dτ

)
dx

≤ (1 + η)
∫
Ω

(
t∫
0
g(t− τ)|∇u(t)|dτ

)2

dx

+(1 + 1
η
)
∫
Ω

(
t∫
0
g(t− τ)(|∇u(τ)−∇u(t)|dτ

)2

dx.

(3.5)

Simple calculations, using Cauchy-Schwarz inequality, show that

(
t∫
0
g(t− τ)(|∇u(τ)−∇u(t)|dτ

)2

dx

≤
t∫
0
g2−r(τ)dτ

∫
Ω

t∫
0
gr(t− τ)|∇u(τ)−∇u(t)|2dτdx.

8



Thus (3.5) and the fact that
t∫
0
g(τ)dτ ≤

∞∫
0
g(τ)dτ = 1− l give

∫
Ω

(
t∫
0
g(t− τ)(|∇u(τ)−∇u(t)|+ |∇u(t)|)dτ

)2

dx

≤ (1 + η)
∫
Ω
|∇u(t)|2

(
t∫
0
g(t− τ)dτ

)2

dx

+(1 + 1
η
)

(
t∫
0
g2−r(τ)dτ

) ∫
Ω

t∫
0
gr(t− τ)|∇u(τ)−∇u(t)|2dτdx

≤ (1 + η)(1− l)2
∫
Ω
|∇u(t)|2dx+ (1 + 1

η
)

(
t∫
0
g2−r(τ)dτ

)
(gr ◦ ∇u)(t).

(3.6)

Taking η = l
1−l

, we find

∫
Ω
∇u(t)

t∫
0
g(t− s)∇u(s)dsdx

≤ 2−l
2

∫
Ω
|∇u|2 dx+ 1

2l

(
t∫
0
g2−r(τ)dτ

)
(gr ◦ ∇u)(t).

Therefore

Ψ
′

(t) ≤ − l
2

∫
Ω
|∇u|2 dx+ 1

2l

(
t∫
0
g2−r(τ)dτ

)
(gr ◦ ∇u)(t)

+
∫
Ω
|∇ut|

2 dx+ 1
ρ+1

∫
Ω
|ut|

ρ+2 dx+ b
∫
Ω
|u|pdx.

(3.7)

The second functional we introduce is

χ(t) :=
∫
Ω

(
∆ut −

|ut|
ρ ut

ρ+ 1

) t∫
0

g(t− s) (u(t)− u(s)) dsdx. (3.8)

Differentiating (3.8) with respect to t and exploiting the equation in (1.2), we obtain

χ
′

(t) =
∫
Ω
∇u(t).

t∫
0
g(t− s) (∇u(t)−∇u(s)) dsdx

+
∫
Ω

(
t∫
0
g(t− s)∆u(s)ds

)(
t∫
0
g(t− s) (u(t)− u(s)) ds

)
dx

−

(
t∫
0
g(s)ds

) ∫
Ω
|∇ut|

2 dx−
∫
Ω
∇ut(t).

t∫
0
g

′

(t− s) (∇u(t)−∇u(s)) dsdx

− 1
ρ+1

∫
Ω
|ut|

ρ ut

t∫
0
g

′

(t− s) (u(t)− u(s)) dsdx− 1
ρ+1

(
t∫
0
g(s)ds

) ∫
Ω
|ut|

ρ+2 dx

−b
∫
Ω
|u|p−2u

(
t∫
0
g(t− s) (u(t)− u(s)) ds

)
dx.

(3.9)

Similarly to (3.4), we proceed to estimate each term in the right-hand side of relation
(3.9) separately. To this end, we shall use repeatedly Cauchy-Schwarz inequality,
Hölder’s inequality and Young’s inequality.
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The first term in the right-hand side of (3.9) may be estimated as follows

∫
Ω
∇u(t).

t∫
0
g(t− s) (∇u(t)−∇u(s)) dsdx

≤ δ
∫
Ω
|∇u|2 dx+ 1

4δ

∫
Ω

[
t∫
0
g(t− s)|∇u(t)−∇u(s)|ds

]2
dx

≤ δ
∫
Ω
|∇u|2dx+ 1

4δ

[
t∫
0
g2−r(τ)dτ

]
(gr ◦ ∇u)(t), ∀δ > 0.

(3.10)

As for the second term in (3.9) we have, by (3.6) with η = 1,

∫
Ω

(
t∫
0
g(t− s)∇u(s)ds

)
.

(
t∫
0
g(t− s) (∇u(t)−∇u(s)) ds

)
dx

≤ δ
∫
Ω

∣∣∣∣∣
t∫
0
g(t− s)∇u(s)ds

∣∣∣∣∣
2

dx+ 1
4δ

∫
Ω

∣∣∣∣∣
t∫
0
g(t− s) (∇u(t)−∇u(s)) ds

∣∣∣∣∣
2

dx

≤
(
2δ + 1

4δ

)( t∫
0
g2−r(τ)dτ

)
(gr ◦ ∇u)(t) + 2δ(1− l)2

∫
Ω
|∇u|2 dx.

(3.11)

For the fourth term, it is easy to see that

∫
Ω
∇ut(t).

t∫
0
g

′

(t− s) (∇u(t)−∇u(s)) dsdx

≤ δ
∫
Ω
|∇ut|

2 dx+ g(0)
4δ

∫
Ω

t∫
0
−g

′

(t− s) |∇u(t)−∇u(s)|2 dsdx, δ > 0.
(3.12)

The fifth term in the right-hand side of (3.9) may be handled similarly,

∫
Ω
|ut|

ρ ut

t∫
0
g

′

(t− s) (u(t)− u(s)) dsdx

≤ δ
∫
Ω
|ut|

2(ρ+1) dx+ 1
4δ

∫
Ω

(
t∫
0
g

′

(t− s) (u(t)− u(s)) ds

)2

dx

≤ δ
∫
Ω
|ut|

2(ρ+1) dx+ g(0)
4δ

Cp

∫
Ω

t∫
0
−g

′

(t− s) |∇u(t)−∇u(s)|2 dsdx,

(3.13)

for any δ > 0 and Cp is the Poincaré constant. Next, by the Sobolev embedding

H1
0 (Ω) ↪→ L2(ρ+1)(Ω) for 0 < ρ ≤ 2/(n− 2) if n ≥ 3 and ρ > 0 if n = 1, 2

and the fact that E(t) ≤ E(0), ∀t ≥ 0, we get∫
Ω

|ut|
2(ρ+1) dx ≤ Cs (2E(0))

ρ
∫
Ω

|∇ut|
2 dx, (3.14)

where Cs is the embedding constant. From (3.13) and (3.14), we obtain

1
ρ+1

∫
Ω
|ut|

ρ ut

t∫
0
g

′

(t− s) (u(t)− u(s)) dsdx

≤ δ Cs

ρ+1
(2E(0))ρ

∫
Ω
|∇ut|

2 dx+ g(0)Cp

4δ(ρ+1)
(−g

′

◦ ∇u)(t).
(3.15)
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For the seventh term, it is easy to see that

−b
∫
Ω
|u|p−2u

(
t∫
0
g(t− s) (u(t)− u(s)) ds

)
dx

≤ δb
∫
Ω
|u|2p−2dx+ b

4δ

∫
Ω

(
t∫
0
g(t− s)|u(t)− u(s)|ds

)2

dx

≤ δb
∫
Ω
|u|2p−2dx+

C2
p

4δ
b

(
t∫
0
g2−r(τ)dτ

)
(gr ◦ ∇u)(t).

(3.16)

By using (2.2), (2.10) and (2.14) we have the following

b
∫
Ω
|u|2p−2dx ≤ bC2p−2

∗ ||∇u||
2(p−1)
2 = bC2p−2

∗ ||∇u||
2(p−2)
2 ||∇u||22

≤ bC2p−2
∗

(
2p

(p−2)l
E(0)

)p−2
||∇u||22 =: C1||∇u||22.

Hence (3.16) becomes

−b
∫
Ω
|u|p−2u

(
t∫
0
g(t− s) (u(t)− u(s)) ds

)
dx

≤ δC1||∇u||22 +
C2

p

4δ
b

(
t∫
0
g2−r(τ)dτ

)
(gr ◦ ∇u)(t).

(3.17)

Taking into account the estimates (3.10)-(3.17) we infer from (3.9) that

χ
′

(t) ≤ (1 + 2(1− l)2 + C1) δ
∫
Ω
|∇u|2 dx− 1

ρ+1

(
t∫
0
g(s)ds

) ∫
Ω
|ut|

ρ+2 dx

+
(
2δ + 1

2δ
+

C2
p

4δ
b
)(

t∫
0
g2−r(s)ds

)
(gr ◦ ∇u)(t) + g(0)

4δ

(
1 + Cp

ρ+1

)
(−g

′

◦ ∇u)(t).

+


δ + Csδ

ρ+ 1
(2E(0))ρ −

t∫
0

g(s)ds


 ∫

Ω

|∇ut|
2 dx. (3.18)

Now we consider the functional

L(t) = ME(t) + εΨ(t) + χ(t)

where M and ε are to be precised later on. From the relations (2.10), (3.7), and
(3.18) we have, for t ≥ t0,

L
′

(t) ≤
[
M
2
− g(0)

4δ

(
1 + Cp

ρ+1

)]
(g

′

◦ ∇u)(t)− g0−ε
ρ+1

∫
Ω
|ut|

ρ+2 dx

−
[
εl
2
− (1 + 2(1− l)2 + C1) δ

] ∫
Ω
|∇u|2 dx+ εb

∫
Ω
|u|p dx

−
[
(g0 − ε)− δ

(
1 + Cs

ρ+1
(2E(0))ρ

)] ∫
Ω
|∇ut|

2 dx

+
(

ε
2l
+ 2δ + 1

2δ
+ C2

∗

4δ
b
)( t∫

0
g2−r(s)ds

)
(gr ◦ ∇u)(t),

(3.19)
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where g0 =
t0∫
0
g(s)ds. At this point, we choose ε < g0 and δ small enough so that

δ < min


 εl

2 (1 + 2(1− l)2 + C1)
,

g0 − ε

1 + Cs

ρ+1
(2E(0))ρ


 .

Once ε and δ are fixed, we pick M sufficiently large so that

ξ

[
M

2
−

g(0)

4δ

(
1 +

Cp

ρ+ 1

)]
−


 ∞∫

0

g2−r(s)ds


( ε

2l
+ 2δ +

1

2δ
+

C2
∗

4δ
b

)
> 0.

Therefore, using the assumption g
′

(t) ≤ −ξgr(t) in (G2), (3.19) takes the form

L
′

(t) ≤ −

{
ξ
[
M
2
− g(0)

4δ

(
1 + Cp

ρ+1

)]
−
(

ε
2l
+ 2δ + 1

2δ
+

C2
∗2

4δ
b
)( t∫

0
g2−r(s)ds

)}

×(gr ◦ ∇u)(t)− g0−ε
ρ+1

∫
Ω
|ut|

ρ+2 dx−
[
εl
2
− (1 + 2(1− l)2 + C1) δ

] ∫
Ω
|∇u|2 dx

−
[
(g0 − ε)− δ

(
1 + Cs

ρ+1
(2E(0))ρ

)] ∫
Ω
|∇ut|

2 dx+ εb
∫
Ω
|u|p dx.

(3.20)

Case 1. r = 1:
By virtue of the choice of ε, δ, and M , estimate (3.20) yields, for some constant

α > 0,
L

′

(t) ≤ −αE(t), ∀t ≥ t0. (3.21)

On the other hand, proceeding similarly to [10] and using the following estimates

∫
Ω

|ut|
ρ utudx ≤ δ1Cp

∫
Ω

|∇u|2 dx+
Cs

4δ1
(2E(0))ρ

∫
Ω

|∇ut|
2 dx, δ1 > 0,

∫
Ω
|ut|

ρ ut

t∫
0
g(t− s) (u(t)− u(s)) dsdx

≤ δ2Cs (2E(0))
ρ ∫
Ω
|∇ut|

2 dx+ 1
4δ2

C̃p(
t∫
0
g2−r(s)ds)(gr ◦ ∇u)(t), δ2 > 0,

it is easy to show that there exist positive numbers β1 and β2 such that

β1E(t) ≤ L(t) ≤ β2E(t). (3.22)

Hence, combining (3.21) and (3.22), we find

L
′

(t) ≤ −
α

β2

L(t), ∀t ≥ t0. (3.23)

A simple integration of (3.23) over (t0, t) leads to

L(t) ≤ L(t0)e
− α

β2
(t−t0), ∀t ≥ t0.

Therefore (3.2) is established again by virtue of (3.22).
Case 2. 1 < r < 3/2.:
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By using (G1) and (G2) we easily see that

∫ ∞

0
g1−θ(τ)dτ < ∞, 0 ≤ θ < 2− r,

so (2.7), (3.1), and Lemma 2.3 yield, for some constant C2 > 0,

(g ◦ ∇u)(t) ≤ C2

{(∫ ∞

0
g1−θ(τ)dτ

)
sup E(t)

}(r−1)/(r−1+θ)

{(gr ◦ ∇u)(t)}θ/(r−1+θ) .

≤ C2

{(∫ ∞

0
g1−θ(τ)dτ

)
E(0)

}(r−1)/(r−1+θ)

{(gr ◦ ∇u)(t)}θ/(r−1+θ) .(3.24)

Therefore we get, for γ > 1,

Eγ(t) ≤ C3


Eγ−1(0)



∫
Ω

|ut|
ρ+2dx+ ||∇ut||

2
2 + ||∇u||22 −

2b

p
||u||pp


+ {(g ◦ ∇u)(t)}γ




≤ C3E
γ−1(0)



∫
Ω

|ut|
ρ+2dx+ ||∇ut||

2
2 + ||∇u||22 −

2b

p
||u||pp


 (3.25)

+C4

{(∫ ∞

0
g1−θ(τ)dτ

)
E(0)

}γ(r−1)/(r−1+θ)

{(gr ◦ ∇u)(t)}γθ/(r−1+θ) ,

for some C3, C4 > 0. By choosing θ = 1
2
and γ = 2r − 1 (hence γθ/(r − 1 + θ) = 1),

estimate (3.25) gives

Eγ(t) ≤ C5



∫
Ω

|ut|
ρ+2dx+ ||∇ut||

2
2 + ||∇u||22 −

2b

p
||u||pp + (gr ◦ ∇u)(t)


 , (3.26)

for some C5 > 0. A combination of (3.20), (3.22) and (3.26) then leads to

L
′

(t) ≤ −
β

C5
Eγ(t) ≤ −

β

C5
(β2)

−γ Lγ(t), ∀t ≥ t0, (3.27)

for some β > 0. A simple integration of (3.27) over (t0, t) yields

L(t) ≤ C(1 + t)−1/(γ−1), ∀t ≥ t0. (3.28)

As a consequence of (3.28), we have

∫ ∞

0
L(t)dt+ sup

t≥0
tL(t) < ∞.

Therefore, by using (2.8) we have

g ◦ ∇u ≤
[∫ t

0
‖∇u(s)‖22ds+ t‖∇u(t)‖22

](r−1)/r

(gr ◦ ∇u)1/r
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≤ C6

[∫ t

0
E(s)ds+ tE(t)

](r−1)/r

(gr ◦ ∇u)1/r

≤
C6

β1

[∫ t

0
L(s)ds+ tL(t)

](r−1)/r

(gr ◦ ∇u)1/r ≤ C7(g
r ◦ ∇u)1/r,

which implies that
gr ◦ ∇u ≥ C8(g ◦ ∇u)r. (3.29)

Consequently, a combination of (3.20) and (3.29) yields

L
′

(t) ≤ −C9

[∫
Ω
|ut|

ρ+2dx+
∫
Ω
|∇u|2dx−

2b

p
||u||pp (3.30)

+
∫
Ω
|∇ut|

2dx+ (g ◦ ∇u)r
]
, ∀ t ≥ t0.

On the other hand, we have similarly to (3.25),

Er(t) ≤ C10

[∫
Ω
|ut|

ρ+2dx+
∫
Ω
|∇u|2dx−

2b

p
||u||pp (3.31)

+
∫
Ω
|∇ut|

2dx+ (g ◦ ∇u)r
]
, ∀ t ≥ t0.

Combining the last two inequalities, we obtain

L′(t) ≤ −C11L
r(t), t ≥ t0. (3.32)

A simple integration of (3.32) over (t0, t) gives

L(t) ≤ K(1 + t)−1/(r−1), t ≥ t0. (3.33)

Therefore (3.3) is obtained by virtue of (3.22). This completes the proof.
Remark 3.1 Note that our result is proved without any condition on g′′ and g′′′

unlike what was assumed in (2.4) of [5]. We only need g to be differentiable and
satisfying (G1) and (G2).
Remark 3.2 By using the fact that E is bounded on [0, t0], we can easily show that
estimates (3.2), (3.3) hold for t ≥ 0.
Acknowledgment: The authors would like to express their sincere thanks to King
Fahd University of Petroleum and Minerals for its support. This work has been
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