2,434 research outputs found

    The Tokyo Axion Helioscope

    Full text link
    The Tokyo Axion Helioscope experiment aims to detect axions which are produced in the solar core. The helioscope uses a strong magnetic field in order to convert axions into X-ray photons and has a mounting to follow the sun very accurately. The photons are detected by an X-ray detector which is made of 16 PIN-photodiodes. In addition, a gas container and a gas regulation system is adopted for recovering the coherence between axions and photons in the conversion region giving sensitivity to axions with masses up to 2 eV. In this paper, we report on the technical detail of the Tokyo Axion Helioscope

    Erlotinib in patients with previously irradiated, recurrent brain metastases from non-small cell lung cancer: Two case reports

    Get PDF
    Background: With the current improvements in primary lung care, the long-term control of brain metastases becomes a clinical challenge. No established therapeutic approaches exist for cranial relapse after response to previous radiotherapy and systemic therapy. Tyrosine kinase inhibitors like erlotinib with its proven activity in non-small cell lung cancer may provide clinical benefits in such patients. Patients and Methods: Two case reports are presented illustrating the efficacy of erlotinib in patients with recurrent brain metastases and parallel thoracic progression. Results: Both patients showed lasting partial remissions in the brain and lung, and clinical symptom improvement. Conclusion: The observed survival times of above 18 and 15 months, respectively, since occurrence of cranial disease manifestation in line with the achieved progression-free survival times of 9 and 6 months by the erlotinib third-line therapy are remarkable. The use of targeted therapies after whole-brain irradiation should be investigated more systematically in prospective clinical trials

    The Tokyo Axion Helioscope Experiment

    Get PDF
    A preliminary result of the solar axion search experiment at the University of Tokyo is presented. We searched for axions which could be produced in the solar core by exploiting the axion helioscope. The helioscope consists of a superconducting magnet with field strength of 4 Tesla over 2.3 meters. From the absence of the axion signal we set a 95 % confidence level upper limit on the axion coupling to two photons gaγγ<6.0×1010GeV1g_{a\gamma\gamma} < 6.0 \times 10^{-10} GeV^{-1} for the axion mass ma<0.03m_a < 0.03 eV. This is the first solar axion search experiment whose sensitivity to gaγγg_{a\gamma\gamma} exceeds the limit inferred from the solar age consideration.Comment: 5 pages, 5 eps files included, uses espcrc2.sty, to be published in Proc. AXION WORKSHOP, Gainesville, Florida, 13-15 March 1998, ed. by P.Sikivi

    Direct Observation of the Hyperfine Transition of the Ground State Positronium

    Get PDF
    We report the first direct measurement of the hyperfine transition of the ground state positronium. The hyperfine structure between ortho-positronium and para-positronium is about 203 GHz. We develop a new optical system to accumulate about 10 kW power using a gyrotron, a mode converter, and a Fabry-P\'{e}rot cavity. The hyperfine transition has been observed with a significance of 5.4 standard deviations. The transition probability is measured to be A=3.11.2+1.6×108A = 3.1^{+1.6}_{-1.2} \times 10^{-8} s1^{-1} for the first time, which is in good agreement with the theoretical value of 3.37×1083.37 \times 10^{-8} s1^{-1}

    Measurement of Positronium hyperfine splitting with quantum oscillation

    Full text link
    Interference between different energy eigenstates in a quantum system results in an oscillation with a frequency which is proportional to the difference in energy between the states. Such an oscillation is observable in polarized positronium when it is placed in a magnetic field. In order to measure the hyperfine splitting of positronium, we perform the precise measurement of this oscillation using a high quality superconducting magnet and fast photon-detectors. A result of 203.324±0.039 (stat.)±0.015( sys.)203.324 \pm 0.039\rm{~(stat.)} \pm 0.015\rm{(~sys.)}~GHz is obtained which is consistent with both theoretical calculations and previous precise measurements.Comment: 4 figures accepted by Phys. Lett.
    corecore