259 research outputs found

    Human bone marrow-derived mesenchymal stem cells

    Get PDF
    Mesenchymal stem cells (MSCs) have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of MSCs induced remission of steroid-resistant acute graft-versus-host disease (GVHD). This review summarizes the knowledge and possible future clinical uses of MSCs

    Effect of the FACs distribution on the middle and low latitude ionospheric current patterns deduced by a 2-D ionospheric potential solver (GEMSIS-POT)

    Get PDF
    第2回極域科学シンポジウム/第35回極域宙空圏シンポジウム 11月15日(火) 国立極地研究所 2階大会議室前フロ

    Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects

    Get PDF
    Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved

    Therapy with un-engineered naïve rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer remains the leading cause of cancer-related mortality despite continuous efforts to find effective treatments. Data from the American Cancer Society indicate that while the overall incidence of lung cancer is declining, it continues to rise in women. Stem cell-based therapy has been an emerging strategy to treat various diseases. The purpose of this paper is to determine the efficacy of an intrinsic anti-cancer effect of rat umbilical cord matrix stem cells (UCMSCs) on lung cancer.</p> <p>Methods</p> <p>A mouse syngeneic lung carcinoma model was used to test the basic ability of UCMSCs to control the growth of lung cancer. Lung tumors were experimentally induced by tail vein administration of Lewis lung carcinoma (LLC) cells derived from the lung of C57BL/6 mouse. Rat UCMSCs were then administered intratracheally five days later or intravenously on days 5 and 7. The tumor burdens were determined by measuring lung weight three weeks after the treatment.</p> <p>Results</p> <p>Co-culture of rat UCMSCs with LLC significantly attenuated the proliferation of LLC cells as monitored by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), a tetrazole cell proliferation assay, thymidine uptake, and direct cell counts. <it>In vitro </it>colony assays with rat UCMSCs as feeder layers markedly reduced LLC colony size and number. Co-culture of rat UCMSCs with LLCs causes G0/G1 arrest of cancer cells. This is evident in the decrease of cyclin A and CDK2 expression. The <it>in vivo </it>studies showed that rat UCMSC treatment significantly decreased tumor weight and the total tumor mass. Histological study revealed that intratracheally or systemically administered rat UCMSCs homed to tumor areas and survived for at least 3 weeks without any evidence of differentiation or adverse effects.</p> <p>Conclusions</p> <p>These results indicate that rat UCMSCs alone remarkably attenuate the growth of lung carcinoma cells <it>in vitro </it>and in a mouse syngeneic lung carcinoma graft model and could be used for targeted cytotherapy for lung cancer.</p

    Polybrene Inhibits Human Mesenchymal Stem Cell Proliferation during Lentiviral Transduction

    Get PDF
    Human mesenchymal stem cells (hMSCs) can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1–8 µg/mL) negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr). Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical

    Mesenchymal Stem Cells Promote Mammosphere Formation and Decrease E-Cadherin in Normal and Malignant Breast Cells

    Get PDF
    Normal and malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew, referred to as stem cells, or tumor initiating cells (TIC). These cells can be enriched by growth as "mammospheres" in three-dimensional cultures.We tested the hypothesis that human bone-marrow derived mesenchymal stem cells (MSC), which are known to support tumor growth and metastasis, increase mammosphere formation.We found that MSC increased human mammary epithelial cell (HMEC) mammosphere formation in a dose-dependent manner. A similar increase in sphere formation was seen in human inflammatory (SUM149) and non-inflammatory breast cancer cell lines (MCF-7) but not in primary inflammatory breast cancer cells (MDA-IBC-3). We determined that increased mammosphere formation can be mediated by secreted factors as MSC conditioned media from MSC spheroids significantly increased HMEC, MCF-7 and SUM149 mammosphere formation by 6.4 to 21-fold. Mammospheres grown in MSC conditioned media had lower levels of the cell adhesion protein, E-cadherin, and increased expression of N-cadherin in SUM149 and HMEC cells, characteristic of a pro-invasive mesenchymal phenotype. Co-injection with MSC in vivo resulted in a reduced latency time to develop detectable MCF-7 and MDA-IBC-3 tumors and increased the growth of MDA-IBC-3 tumors. Furthermore, E-cadherin expression was decreased in MDA-IBC-3 xenografts with co-injection of MSC.MSC increase the efficiency of primary mammosphere formation in normal and malignant breast cells and decrease E-cadherin expression, a biologic event associated with breast cancer progression and resistance to therapy

    Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors

    Get PDF
    Tumor targeting by genetically modified mesenchymal stromal/stem cells (MSCs) carrying anti-cancer molecules represents a promising cell-based strategy. We previously showed that the pro-apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be successfully delivered by MSCs to cancer sites. While the interaction between TRAIL and its receptors is clear, more obscure is the way in which MSCs can selectively target tumors and their antigens. Several neuroectoderm-derived neoplasms, including glioblastoma (GBM), sarcomas, and neuroblastoma, express high levels of the tumor-associated antigen GD2. We have already challenged this cell surface disialoganglioside by a chimeric antigen receptor (CAR)-T cell approach against neuroblastoma. With the intent to maximize the therapeutic profile of MSCs delivering TRAIL, we here originally developed a bi-functional strategy where TRAIL is delivered by MSCs that are also gene modified with the truncated form of the anti-GD2 CAR (GD2 tCAR) to mediate an immunoselective recognition of GD2-positive tumors. These bi-functional MSCs expressed high levels of TRAIL and GD2 tCAR associated with a robust anti-tumor activity against GD2-positive GBM cells. Most importantly, the anti-cancer action was reinforced by the enhanced targeting potential of such bi-functional cells. Collectively, our results suggest that a truncated anti-GD2 CAR might be a powerful new tool to redirect MSCs carrying TRAIL against GD2-expressing tumors. This affinity-based dual targeting holds the promise to combine site-specific and prolonged retention of MSCs in GD2-expressing tumors, thereby providing a more effective delivery of TRAIL for still incurable cancers

    Development of a Tumor-Selective Approach to Treat Metastatic Cancer

    Get PDF
    BACKGROUND: Patients diagnosed with metastatic cancer have almost uniformly poor prognoses. The treatments available for patients with disseminated disease are usually not curative and have side effects that limit the therapy that can be given. A treatment that is selectively toxic to tumors would maximize the beneficial effects of therapy and minimize side effects, potentially enabling effective treatment to be administered. METHODS AND FINDINGS: We postulated that the tumor-tropic property of stem cells or progenitor cells could be exploited to selectively deliver a therapeutic gene to metastatic solid tumors, and that expression of an appropriate transgene at tumor loci might mediate cures of metastatic disease. To test this hypothesis, we injected HB1.F3.C1 cells transduced to express an enzyme that efficiently activates the anti-cancer prodrug CPT-11 intravenously into mice bearing disseminated neuroblastoma tumors. The HB1.F3.C1 cells migrated selectively to tumor sites regardless of the size or anatomical location of the tumors. Mice were then treated systemically with CPT-11, and the efficacy of treatment was monitored. Mice treated with the combination of HB1.F3.C1 cells expressing the CPT-11-activating enzyme and this prodrug produced tumor-free survival of 100% of the mice for >6 months (P<0.001 compared to control groups). CONCLUSIONS: The novel and significant finding of this study is that it may be possible to exploit the tumor-tropic property of stem or progenitor cells to mediate effective, tumor-selective therapy for metastatic tumors, for which no tolerated curative treatments are currently available

    Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy

    Get PDF
    BACKGROUND: Mesenchymal stromal cells may represent an ideal candidate to deliver anti-cancer drugs. In a previous study, we demonstrated that exposure of mouse bone marrow derived stromal cells to Doxorubicin led them to acquire anti-proliferative potential towards co-cultured haematopoietic stem cells (HSCs). We thus hypothesized whether freshly isolated human bone marrow Mesenchymal stem cells (hMSCs) and mature murine stromal cells (SR4987 line) primed in vitro with anti-cancer drugs and then localized near cancer cells, could inhibit proliferation. METHODS AND PRINCIPAL FINDINGS: Paclitaxel (PTX) was used to prime culture of hMSCs and SR4987. Incorporation of PTX into hMSCs was studied by using FICT-labelled-PTX and analyzed by FACS and confocal microscopy. Release of PTX in culture medium by PTX primed hMSCs (hMSCsPTX) was investigated by HPLC. Culture of Endothelial cells (ECs) and aorta ring assay were used to test the anti-angiogenic activity of hMSCsPTX and PTX primed SR4987(SR4987PTX), while anti-tumor activity was tested in vitro on the proliferation of different tumor cell lines and in vivo by co-transplanting hMSCsPTX and SR4987PTX with cancer cells in mice. Nevertheless, despite a loss of cells due to chemo-induced apoptosis, both hMSCs and SR4987 were able to rapidly incorporate PTX and could slowly release PTX in the culture medium in a time dependent manner. PTX primed cells acquired a potent anti-tumor and anti-angiogenic activity in vitro that was dose dependent, and demonstrable by using their conditioned medium or by co-culture assay. Finally, hMSCsPTX and SR4987PTX co-injected with human cancer cells (DU145 and U87MG) and mouse melanoma cells (B16) in immunodeficient and in syngenic mice significantly delayed tumor takes and reduced tumor growth. CONCLUSIONS: These data demonstrate, for the first time, that without any genetic manipulation, mesenchymal stromal cells can uptake and subsequently slowly release PTX. This may lead to potential new tools to increase efficacy of cancer therapy

    VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma

    Get PDF
    Little is known about the factors that enable the mobilisation of human mesenchymal stem cells (MSC) from the bone marrow into the blood stream and their recruitment to and retention in the tumour. We found specific migration of MSC towards growth factors present in pancreatic tumours, such as PDGF, EGF, VEGF and specific inhibitors Glivec, Erbitux and Avastin interfered with migration. Within a few hours, MSC migrated into spheroids consisting of pancreatic cancer cells, fibroblasts and endothelial cells as measured by time-lapse microscopy. Supernatant from subconfluent MSC increased sprouting of HUVEC due to VEGF production by MSC itself as demonstrated by RT-PCR and ELISA. Only few MSCs were differentiated into endothelial cells in vitro, whereas in vivo differentiation was not observed. Lentiviral GFP-marked MSCs, injected in nude mice xenografted with orthotopic pancreatic tumours, preferentially migrated into the tumours as observed by FACS analysis of green fluorescent cells. By immunofluorescence and intravital microscopic studies, we found the interaction of MSC with the endothelium of blood vessels. Mesenchymal stem cells supported tumour angiogenesis in vivo, that is CD31+ vessel density was increased after the transfer of MSC compared with siVEGF-MSC. Our data demonstrate the migration of MSC toward tumour vessels and suggest a supportive role in angiogenesis
    corecore