42,460 research outputs found

    Beam impingement angle effects on secondary electron emission characteristics of textured pyrolytic graphite

    Get PDF
    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces

    Thermal performance of a photographic laboratory process: Solar Hot Water System

    Get PDF
    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed

    Absence of orbital-selective Mott transition in Ca_2-xSr_xRuO4

    Full text link
    Quasi-particle spectra of the layer perovskite Sr2_2RuO4_4 are calculated within Dynamical Mean Field Theory for increasing values of the on-site Coulomb energy UU. At small UU the planar geometry splits the t2gt_{2g} bands near EFE_F into a wide, two-dimensional dxyd_{xy} band and two narrow, nearly one-dimensional dxz,yzd_{xz,yz} bands. At larger UU, however, the spectral distribution of these states exhibit similar correlation features, suggesting a common metal-insulator transition for all t2gt_{2g} bands at the same critical UU.Comment: 4 pages, 4 figure

    A classical statistical model for distributions of escape events in swept-bias Josephson junctions

    Full text link
    We have developed a model for experiments in which the bias current applied to a Josephson junction is slowly increased from zero until the junction switches from its superconducting zero-voltage state, and the bias value at which this occurs is recorded. Repetition of such measurements yields experimentally determined probability distributions for the bias current at the moment of escape. Our model provides an explanation for available data on the temperature dependence of these escape peaks. When applied microwaves are included we observe an additional peak in the escape distributions and demonstrate that this peak matches experimental observations. The results suggest that experimentally observed switching distributions, with and without applied microwaves, can be understood within classical mechanics and may not exhibit phenomena that demand an exclusively quantum mechanical interpretation.Comment: Eight pages, eight figure

    Vanishing of Gravitational Particle Production in the Formation of Cosmic Strings

    Get PDF
    We consider the gravitationally induced particle production from the quantum vacuum which is defined by a free, massless and minimally coupled scalar field during the formation of a gauge cosmic string. Previous discussions of this topic estimate the power output per unit length along the string to be of the order of 106810^{68} ergs/sec/cm in the s-channel. We find that this production may be completely suppressed. A similar result is also expected to hold for the number of produced photons.Comment: 10 pages, Plain LaTex. Minor improvements. To appear in PR

    One Dimensional Nonequilibrium Kinetic Ising Models with Branching Annihilating Random Walk

    Full text link
    Nonequilibrium kinetic Ising models evolving under the competing effect of spin flips at zero temperature and nearest neighbour spin exchanges at T=∞T=\infty are investigated numerically from the point of view of a phase transition. Branching annihilating random walk of the ferromagnetic domain boundaries determines the steady state of the system for a range of parameters of the model. Critical exponents obtained by simulation are found to agree, within error, with those in Grassberger's cellular automata.Comment: 10 pages, Latex, figures upon request, SZFKI 05/9

    Hyperspherical Treatment of Strongly-Interacting Few-Fermion Systems in One Dimension

    Full text link
    We examine a one-dimensional two-component fermionic system in a trap, assuming that all particles have the same mass and interact through a strong repulsive zero-range force. First we show how a simple system of three strongly interacting particles in a harmonic trap can be treated using the hyperspherical formalism. Next we discuss the behavior of the energy for the N-body system.Comment: 5 pages. Original paper for EPJ ST in connection with the workshop BEC2014 28-31 May 2014 in Levico Terme, Ital

    A Connection between Submillimeter Continuum Flux and Separation in Young Binaries

    Full text link
    We have made sensitive 800-micron continuum observations of low-mass, pre-main sequence (PMS) binary stars with projected separations less than 25 AU in Taurus-Auriga to study disks in the young binary environment. We did not detect any of the observed binaries, with typical 3-sigma upper limits of about 30 mJy. Combining our observations with previous 1300-micron observations of PMS Taurus binaries by Beckwith et al. (1990) and others, we find that the submillimeter fluxes from binaries with projected separations between 1 AU and 50 AU are significantly lower than fluxes from binaries with projected separations > 50 AU. The submillimeter fluxes from the wider binaries are consistent with those of PMS single stars. This may indicate lower disk surface densities and masses in the close binaries. Alternatively, dynamical clearing of gaps by close binaries is marginally sufficient to lower their submillimeter fluxes to the observed levels, even without reduction of surface densities elsewhere in the disks.Comment: 12 pages, uuencoded compressed postscript with figures; Wisconsin Astrophysics 526; to appear in ApJ Letter
    • …
    corecore