We have developed a model for experiments in which the bias current applied
to a Josephson junction is slowly increased from zero until the junction
switches from its superconducting zero-voltage state, and the bias value at
which this occurs is recorded. Repetition of such measurements yields
experimentally determined probability distributions for the bias current at the
moment of escape. Our model provides an explanation for available data on the
temperature dependence of these escape peaks. When applied microwaves are
included we observe an additional peak in the escape distributions and
demonstrate that this peak matches experimental observations. The results
suggest that experimentally observed switching distributions, with and without
applied microwaves, can be understood within classical mechanics and may not
exhibit phenomena that demand an exclusively quantum mechanical interpretation.Comment: Eight pages, eight figure