88 research outputs found

    Genetic diversity in pigeonpea [Cajanus cajan (L.) Millsp.] Landraces as revealed by simple sequence repeat markers

    Get PDF
    Genetic relationships among 88 pigeonpea accessions from a presumed centre of origin and diversity, India and a presumed secondary centre of diversity in East Africa were evaluated using six microsatellite markers. Forty-seven (47) alleles were detected in the populations studied, with a mean of eight alleles per locus. Populations were defined by region (India and East Africa) and sub-populations by country in the case of East Africa and State in the case of India. Substantial differentiation among regions was evident from Roger’s modified distance and Wright’s F statistic. Greatest genetic diversity in terms of number of alleles, number of rare alleles and Nei’s unbiased estimate of gene diversity (H) was found in India as opposed to East Africa. This supports the hypothesis that India is the centre of diversity and East Africa is a secondary centre of diversity. Within East Africa, germplasm from Tanzania had the highest diversity according to Nei’s unbiased estimate of gene diversity, followed by Kenya and Uganda. Germplasm from Kenya and Tanzania were more closely related than that of Uganda according to Roger’s modified distance. Within India, results did not indicate a clear centre of diversity. Values of genetic distance indicated that genetic relationships followed geographical proximity

    Genetic Diversity and Population Structure of the Indigenous Sheep in Kenya Based on Microsatellite Analysis: Implications for their Conservation

    Get PDF
    ABSTRACT Knowledge of the genetic relationship and admixture among neighbouring livestock populations is crucial for conservation efforts. This study analyzed the molecular diversity of fifteen sheep populations (both indigenous and exotic) in Kenya. Blood samples from 582 individuals were genotyped across the 15 microsatellite markers. The expected heterozygosity and Mean number of alleles ranged from 0.596 to 0.807 and 6.67 to 9.33 respectively. Most populations showed significant heterozygote deficiency due to a moderately high level of inbreeding, f IS (0.109). Population genetic differentiation was reasonably high (θ ST = 0.101). Four population clusters majorly based on geographical proximity and interbreeding among populations were detected. These results indicate levels of admixture warranting institution of conservation measures. However, a more encompassing study including all regions in the country as well as more microsatellite markers is necessary to comprehensively understand the dynamics of genetic introgression

    A Process for Co-Designing Educational Technology Systems for Refugee Children

    Get PDF
    There is a growing interest in the potential for technology to facilitate emergency education of refugee children. However, designing in this space requires knowledge of the displaced population and the contextual dynamics surrounding it. Design should therefore be informed by both existing research across relevant disciplines, and from the practical experience of those who are on the ground facing the problem in real life. This paper describes a process for designing appropriate technology for these settings. The process draws on literature from emergency education, student engagement and motivation, educational technology, and participatory design. We emphasise a thorough understanding of the problem definition, the nature of the emergency, and of socio-cultural aspects that can inform the design process. We describe how this process was implemented leading to the design of a digital learning space for children living in a refugee camp in Greece. This drew on involving different groups of participants such as social-workers, parents, and children

    INTERGROWTH-21st Gestational Dating and Fetal and Newborn Growth Standards in Peri-Urban Nairobi, Kenya: Quasi-Experimental Implementation Study Protocol.

    Get PDF
    BACKGROUND: The burden of preterm birth, fetal growth impairment, and associated neonatal deaths disproportionately falls on low- and middle-income countries where modern obstetric tools are not available to date pregnancies and monitor fetal growth accurately. The INTERGROWTH-21st gestational dating, fetal growth monitoring, and newborn size at birth standards make this possible. OBJECTIVE: To scale up the INTERGROWTH-21st standards, it is essential to assess the feasibility and acceptability of their implementation and their effect on clinical decision-making in a low-resource clinical setting. METHODS: This study protocol describes a pre-post, quasi-experimental implementation study of the standards at Jacaranda Health, a maternity hospital in peri-urban Nairobi, Kenya. All women with viable fetuses receiving antenatal and delivery services, their resulting newborns, and the clinicians caring for them from March 2016 to March 2018 are included. The study comprises a 12-month preimplementation phase, a 12-month implementation phase, and a 5-month post-implementation phase to be completed in August 2018. Quantitative clinical and qualitative data collected during the preimplementation and implementation phases will be assessed. A clinician survey was administered eight months into the implementation phase, month 20 of the study. Implementation outcomes include quantitative and qualitative analyses of feasibility, acceptability, adoption, appropriateness, fidelity, and penetration of the standards. Clinical outcomes include appropriateness of referral and effect of the standards on clinical care and decision-making. Descriptive analyses will be conducted, and comparisons will be made between pre- and postimplementation outcomes. Qualitative data will be analyzed using thematic coding and compared across time. The study was approved by the Amref Ethics and Scientific Review Committee (Kenya) and the Harvard University Institutional Review Board. Study results will be shared with stakeholders through conferences, seminars, publications, and knowledge management platforms. RESULTS: From October 2016 to February 2017, over 90% of all full-time Jacaranda clinicians (26/28) received at least one of the three aspects of the INTERGROWTH-21st training: gestational dating ultrasound, fetal growth monitoring ultrasound, and neonatal anthropometry standards. Following the training, implementation and evaluation of the standards in Jacaranda Health's clinical workflow will take place from March 2017 through March 5, 2018. Data analysis will be finalized, and results will be shared by August 2018. CONCLUSIONS: The findings of this study will have major implications on the national and global scale up of the INTERGROWTH-21st standards and on the process of scaling up global standards in general, particularly in limited-resource settings. REGISTERED REPORT IDENTIFIER: RR1-10.2196/10293
    • …
    corecore