190 research outputs found

    On the market value of information commodities. I. The nature of information and information commodities

    Get PDF
    This article lays the conceptual foundations for the study of the market value of information commodities. The terms “information” and “commodity” are given precise definitions in order to characterize “information commodity,” and thus to provide a sound basis for examining questions of pricing. Information is used by marketplace actors to make decisions or to control processes. Thus, we define information as the ability of a goal‐seeking system to decide or control. By “decide” we mean choosing one alternative among several that may be executed in pursuit of a well‐defined objective. “Control” means the ordering of actions. Two factors make it possible to turn something into a commodity: (1) appropriability, and (2) valuability. If something cannot be appropriated (i.e., owned), it cannot be traded; moreover, if it cannot be valued, there is no way to determine for what it might be exchanged. We define an information commodity as a commodity whose function it is to enable the user, a goal‐seeking system, to obtain information, i.e., to otain the ability to decide or control. Books, databases, computer programs, and advisory services are common examples of information commodities. Their market value derives from their capacity to furnish information

    Connections between Classical and Parametric Network Entropies

    Get PDF
    This paper explores relationships between classical and parametric measures of graph (or network) complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity

    Dedalo: looking for clusters explanations in a labyrinth of Linked Data

    Get PDF
    We present Dedalo, a framework which is able to exploit Linked Data to generate explanations for clusters. In general, any result of a Knowledge Discovery process, including clusters, is interpreted by human experts who use their background knowledge to explain them. However, for someone without such expert knowledge, those results may be difficult to understand. Obtaining a complete and satisfactory explanation becomes a laborious and time-consuming process, involving expertise in possibly different domains. Having said so, not only does the Web of Data contain vast amounts of such background knowledge, but it also natively connects those domains. While the efforts put in the interpretation process can be reduced with the support of Linked Data, how to automatically access the right piece of knowledge in such a big space remains an issue. Dedalo is a framework that dynamically traverses Linked Data to find commonalities that form explanations for items of a cluster. We have developed different strategies (or heuristics) to guide this traversal, reducing the time to get the best explanation. In our experiments, we compare those strategies and demonstrate that Dedalo finds relevant and sophisticated Linked Data explanations from different areas

    Information inequalities and Generalized Graph Entropies

    Get PDF
    In this article, we discuss the problem of establishing relations between information measures assessed for network structures. Two types of entropy based measures namely, the Shannon entropy and its generalization, the R\'{e}nyi entropy have been considered for this study. Our main results involve establishing formal relationship, in the form of implicit inequalities, between these two kinds of measures when defined for graphs. Further, we also state and prove inequalities connecting the classical partition-based graph entropies and the functional-based entropy measures. In addition, several explicit inequalities are derived for special classes of graphs.Comment: A preliminary version. To be submitted to a journa

    Exploring Statistical and Population Aspects of Network Complexity

    Get PDF
    The characterization and the definition of the complexity of objects is an important but very difficult problem that attracted much interest in many different fields. In this paper we introduce a new measure, called network diversity score (NDS), which allows us to quantify structural properties of networks. We demonstrate numerically that our diversity score is capable of distinguishing ordered, random and complex networks from each other and, hence, allowing us to categorize networks with respect to their structural complexity. We study 16 additional network complexity measures and find that none of these measures has similar good categorization capabilities. In contrast to many other measures suggested so far aiming for a characterization of the structural complexity of networks, our score is different for a variety of reasons. First, our score is multiplicatively composed of four individual scores, each assessing different structural properties of a network. That means our composite score reflects the structural diversity of a network. Second, our score is defined for a population of networks instead of individual networks. We will show that this removes an unwanted ambiguity, inherently present in measures that are based on single networks. In order to apply our measure practically, we provide a statistical estimator for the diversity score, which is based on a finite number of samples

    Limitations of Gene Duplication Models: Evolution of Modules in Protein Interaction Networks

    Get PDF
    It has been generally acknowledged that the module structure of protein interaction networks plays a crucial role with respect to the functional understanding of these networks. In this paper, we study evolutionary aspects of the module structure of protein interaction networks, which forms a mesoscopic level of description with respect to the architectural principles of networks. The purpose of this paper is to investigate limitations of well known gene duplication models by showing that these models are lacking crucial structural features present in protein interaction networks on a mesoscopic scale. This observation reveals our incomplete understanding of the structural evolution of protein networks on the module level

    New Polynomial-Based Molecular Descriptors with Low Degeneracy

    Get PDF
    In this paper, we introduce a novel graph polynomial called the ‘information polynomial’ of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power

    Information Indices with High Discriminative Power for Graphs

    Get PDF
    In this paper, we evaluate the uniqueness of several information-theoretic measures for graphs based on so-called information functionals and compare the results with other information indices and non-information-theoretic measures such as the well-known Balaban index. We show that, by employing an information functional based on degree-degree associations, the resulting information index outperforms the Balaban index tremendously. These results have been obtained by using nearly 12 million exhaustively generated, non-isomorphic and unweighted graphs. Also, we obtain deeper insights on these and other topological descriptors when exploring their uniqueness by using exhaustively generated sets of alkane trees representing connected and acyclic graphs in which the degree of a vertex is at most four
    corecore