298 research outputs found

    Winning Cores in Parity Games

    Full text link
    We introduce the novel notion of winning cores in parity games and develop a deterministic polynomial-time under-approximation algorithm for solving parity games based on winning core approximation. Underlying this algorithm are a number properties about winning cores which are interesting in their own right. In particular, we show that the winning core and the winning region for a player in a parity game are equivalently empty. Moreover, the winning core contains all fatal attractors but is not necessarily a dominion itself. Experimental results are very positive both with respect to quality of approximation and running time. It outperforms existing state-of-the-art algorithms significantly on most benchmarks

    Aggregation of chemotactic organisms in a differential flow

    Get PDF
    We study the effect of advection on the aggregation and pattern formation in chemotactic systems described by Keller-Segel type models. The evolution of small perturbations is studied analytically in the linear regime complemented by numerical simulations. We show that a uniform differential flow can significantly alter the spatial structure and dynamics of the chemotactic system. The flow leads to the formation of anisotropic aggregates that move following the direction of the flow, even when the chemotactic organisms are not directly advected by the flow. Sufficiently strong advection can stop the aggregation and coarsening process that is then restricted to the direction perpendicular to the flow

    Coherent states for the hydrogen atom

    Get PDF
    We construct a system of coherent states for the hydrogen atom that is expressed in terms of elementary functions. Unlike to the previous attempts in this direction, this system possesses the properties equivalent to the most of those for the harmonic oscillator, with modifications due to the character of the problem.Comment: 6 pages, LATEX, using ioplppt.sty and iopfts.sty. v.2: some misprints are corrected. To appear in J.Phys.

    Dependence Logic with Generalized Quantifiers: Axiomatizations

    Full text link
    We prove two completeness results, one for the extension of dependence logic by a monotone generalized quantifier Q with weak interpretation, weak in the meaning that the interpretation of Q varies with the structures. The second result considers the extension of dependence logic where Q is interpreted as "there exists uncountable many." Both of the axiomatizations are shown to be sound and complete for FO(Q) consequences.Comment: 17 page

    Elastic scattering losses in the four-wave mixing of Bose Einstein Condensates

    Full text link
    We introduce a classical stochastic field method that accounts for the quantum fluctuations responsible for spontaneous initiation of various atom optics processes. We assume a delta-correlated Gaussian noise in all initially empty modes of atomic field. Its strength is determined by comparison with the analytical results for two colliding condensates in the low loss limit. Our method is applied to the atomic four wave mixing experiment performed at MIT [Vogels {\it et. al.}, Phys. Rev. Lett. {\bf 89}, 020401, (2002)], for the first time reproducing experimental data

    Coherent states for the hydrogen atom

    Get PDF
    We construct wave packets for the hydrogen atom labelled by the classical action-angle variables with the following properties. i) The time evolution is exactly given by classical evolution of the angle variables. (The angle variable corresponding to the position on the orbit is now non-compact and we do not get exactly the same state after one period. However the gross features do not change. In particular the wave packet remains peaked around the labels.) ii) Resolution of identity using this overcomplete set involves exactly the classical phase space measure. iii) Semi-classical limit is related to Bohr-Sommerfield quantization. iv) They are almost minimum uncertainty wave packets in position and momentum.Comment: 9 pages, 2 figures, minor change in language and journal reference adde

    The Epsilon Calculus and Herbrand Complexity

    Get PDF
    Hilbert's epsilon-calculus is based on an extension of the language of predicate logic by a term-forming operator ϵx\epsilon_{x}. Two fundamental results about the epsilon-calculus, the first and second epsilon theorem, play a role similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential theorems obtained by this elimination procedure.Comment: 23 p

    Coherent states for the hydrogen atom: discrete and continuous spectra

    Get PDF
    We construct the systems of generalised coherent states for the discrete and continuous spectra of the hydrogen atom. These systems are expressed in elementary functions and are invariant under the SO(3,2)SO(3, 2) (discrete spectrum) and SO(4,1)SO(4, 1) (continuous spectrum) subgroups of the dynamical symmetry group SO(4,2)SO(4, 2) of the hydrogen atom. Both systems of coherent states are particular cases of the kernel of integral operator which interwines irreducible representations of the SO(4,2)SO(4, 2) group.Comment: 15 pages, LATEX, minor sign corrections, to appear in J.Phys.

    Radial Squeezed States and Rydberg Wave Packets

    Get PDF
    We outline an analytical framework for the treatment of radial Rydberg wave packets produced by short laser pulses in the absence of external electric and magnetic fields. Wave packets of this type are localized in the radial coordinates and have p-state angular distributions. We argue that they can be described by a particular analytical class of squeezed states, called radial squeezed states. For hydrogenic Rydberg atoms, we discuss the time evolution of the corresponding hydrogenic radial squeezed states. They are found to undergo decoherence and collapse, followed by fractional and full revivals. We also present their uncertainty product and uncertainty ratio as functions of time. Our results show that hydrogenic radial squeezed states provide a suitable analytical description of hydrogenic Rydberg atoms excited by short-pulsed laser fields.Comment: published in Physical Review
    corecore